Afficher la notice abrégée

hal.structure.identifierInstituto Politechnico National [IPN]
dc.contributor.authorHERNANDEZ-BELTRAN, José Enrique
hal.structure.identifierCentro de Investigación y Desarrollo de Tecnología Digital [Mexico]
dc.contributor.authorDÍAZ-RAMÍREZ, Victor H.
hal.structure.identifierInstituto Tecnológico de Tijuana = Tijuana Institute of Technology [Tijuana]
dc.contributor.authorTRUJILLO, Leonardo
hal.structure.identifierUniversité de Bordeaux [UB]
hal.structure.identifierQuality control and dynamic reliability [CQFD]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorLEGRAND, Pierrick
dc.date.accessioned2024-04-04T03:04:46Z
dc.date.available2024-04-04T03:04:46Z
dc.date.issued2018
dc.identifier.issn2210-6502
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193184
dc.description.abstractEnRestoring hazy images is challenging since it must account for several physical factors that are related to the image formation process.Existing analytical methods can only provide partial solutions because they rely on assumptions that may not be valid in practice. This research presents an effective method for restoring hazy images based on genetic programming. Using basic mathematical operators several computer programs that estimate the medium transmission function of hazy scenes are automatically evolved. Afterwards, image restoration is performed using the estimated transmission function in a physics-based restoration model. The proposed estimators are optimized with respect to the mean-absolute-error.Thus, the effects of haze are effectively removed while minimizing overprocessing artifacts.The performance of the evolved GP estimators given in terms of objective metrics and a subjective visual criterion, is evaluated on synthetic and real-life hazy images. Comparisons are carried out with state-of-the-art methods, showing that the evolved estimators can outperform these methods without incurring aloss in efficiency, and in most scenarios achieving improved performance that is statistically significant.
dc.language.isoen
dc.publisherElsevier
dc.title.enDesign of estimators for restoration of images degraded by haze using genetic programming
dc.typeArticle de revue
dc.subject.halInformatique [cs]/Intelligence artificielle [cs.AI]
dc.subject.halInformatique [cs]/Traitement du signal et de l'image
bordeaux.journalSwarm and Evolutionary Computation
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01909121
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01909121v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Swarm%20and%20Evolutionary%20Computation&rft.date=2018&rft.eissn=2210-6502&rft.issn=2210-6502&rft.au=HERNANDEZ-BELTRAN,%20Jos%C3%A9%20Enrique&D%C3%8DAZ-RAM%C3%8DREZ,%20Victor%20H.&TRUJILLO,%20Leonardo&LEGRAND,%20Pierrick&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée