Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierIHU-LIRYC
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorPOTSE, Mark
dc.date.accessioned2024-04-04T03:04:41Z
dc.date.available2024-04-04T03:04:41Z
dc.date.issued2018-04-20
dc.identifier.issn1664-042X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193176
dc.description.abstractEnRealistic electrocardiogram (ECG) simulation with numerical models is important for research linking cellular and molecular physiology to clinically observable signals, and crucial for patient tailoring of numerical heart models. However, ECG simulation with a realistic torso model is computationally much harder than simulation of cardiac activity itself, so that many studies with sophisticated heart models have resorted to crude approximations of the ECG. This paper shows how the classical concept of electrocardiographic lead fields can be used for an ECG simulation method that matches the realism of modern heart models. The accuracy and resource requirements were compared to those of a full-torso solution for the potential and scaling was tested up to 14,336 cores with a heart model consisting of 11 million nodes. Reference ECGs were computed on a 3.3 billion-node heart-torso mesh at 0.2 mm resolution. The results show that the lead-field method is more efficient than a full-torso solution when the number of simulated samples is larger than the number of computed ECG leads. While the initial computation of the lead fields remains a hard and poorly scalable problem, the ECG computation itself scales almost perfectly and, even for several hundreds of ECG leads, takes much less time than the underlying simulation of cardiac activity.
dc.language.isoen
dc.publisherFrontiers
dc.subject.enhigh-performance computing
dc.subject.enreaction-diffusion model
dc.subject.ennumerical modeling
dc.subject.enelectrocardiogram
dc.subject.enbidomain model
dc.subject.enlead fields
dc.title.enScalable and Accurate ECG Simulation for Reaction-Diffusion Models of the Human Heart
dc.typeArticle de revue
dc.identifier.doi10.3389/fphys.2018.00370
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologie/Cardiologie et système cardiovasculaire
dc.subject.halInformatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
dc.subject.halInformatique [cs]/Modélisation et simulation
bordeaux.journalFrontiers in Physiology
bordeaux.page370
bordeaux.volume9
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01910637
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01910637v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Frontiers%20in%20Physiology&rft.date=2018-04-20&rft.volume=9&rft.spage=370&rft.epage=370&rft.eissn=1664-042X&rft.issn=1664-042X&rft.au=POTSE,%20Mark&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée