Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorHICKEL, Michel
hal.structure.identifierÉquipe Géométrie
dc.contributor.authorMATUSINSKI, Mickael
dc.date.accessioned2024-04-04T03:04:33Z
dc.date.available2024-04-04T03:04:33Z
dc.date.issued2019-06-01
dc.identifier.issn0021-8693
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193164
dc.description.abstractEnWe deal with the algebraicity of an iterated Puiseux series in several variables in terms of the properties of its coefficients. Our aim is to generalize to several variables the results from [HM15]. We show that the algebraicity of such a series for given bounded degrees is determined by a finite number of explicit universal polynomial formulas. Conversely, given a vanishing polynomial, there is a closed-form formula for the coefficients of the series in terms of the coefficients of the polynomial and of a bounded initial part of the series.
dc.language.isoen
dc.publisherElsevier
dc.title.enAbout algebraic Puiseux series in several variables
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jalgebra.2019.02.004
dc.subject.halMathématiques [math]/Algèbre commutative [math.AC]
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv1702.03709
bordeaux.journalJournal of Algebra
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01914487
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01914487v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Algebra&rft.date=2019-06-01&rft.eissn=0021-8693&rft.issn=0021-8693&rft.au=HICKEL,%20Michel&MATUSINSKI,%20Mickael&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record