Afficher la notice abrégée

hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorDELECROIX, Vincent
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorGOUJARD, Elise
dc.contributor.authorZOGRAF, Peter
hal.structure.identifierUniversité Pierre et Marie Curie - Paris 6 - UFR de Médecine Pierre et Marie Curie [UPMC]
dc.contributor.authorZORICH, Anton
dc.date.accessioned2024-04-04T03:04:25Z
dc.date.available2024-04-04T03:04:25Z
dc.date.issued2020
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193151
dc.description.abstractEnA meander is a topological configuration of a line and a simple closed curve in the plane (or a pair of simple closed curves on the 2-sphere) intersecting transversally. In physics, meanders provide a model of polymer folding, and their enumeration is directly related to the entropy of the associated dynamical systems. We combine recent results on Masur-Veech volumes of the moduli spaces of meromorphic quadratic differentials in genus zero and our previous result that horizontal and vertical separatrix diagrams of integer quadratic differentials are asymptotically uncorrelated to derive two applications to asymptotic enumeration of meanders. First, we get simple asymptotic formulae for the number of pairs of transverse simple closed curves on a sphere and for the number of closed meanders of fixed combinatorial type when the number of crossings 2N goes to infinity. Second, we compute the asymptotic probability of getting a simple closed curve on a sphere by identifying the endpoints of two arc systems (one on each of the two hemispheres) along the common equator. Here the total number of minimal arcs of the two arc systems is considered as a fixed parameter while the number of all arcs (same for each of the two hemispheres) grows. The number of all meanders with 2N crossings grows exponentially when N grows. However, the additional combinatorial constraints we impose in this article yield polynomial asymptotics.
dc.language.isoen
dc.publisherCambridge Univ Press
dc.title.enEnumeration of meanders and Masur-Veech volumes
dc.typeArticle de revue
dc.identifier.doi10.1017/fmp.2020.2
dc.subject.halMathématiques [math]/Topologie géométrique [math.GT]
dc.subject.halMathématiques [math]/Combinatoire [math.CO]
dc.subject.halMathématiques [math]/Systèmes dynamiques [math.DS]
dc.identifier.arxiv1705.05190
bordeaux.journalForum of Mathematics, Pi
bordeaux.pagee4
bordeaux.volume8
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01915174
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01915174v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Forum%20of%20Mathematics,%20Pi&rft.date=2020&rft.volume=8&rft.spage=e4&rft.epage=e4&rft.au=DELECROIX,%20Vincent&GOUJARD,%20Elise&ZOGRAF,%20Peter&ZORICH,%20Anton&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée