Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorNGUYEN, Duc-Manh
dc.date.accessioned2024-04-04T03:04:11Z
dc.date.available2024-04-04T03:04:11Z
dc.date.issued2022-06
dc.identifier.issn0021-2172
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193130
dc.description.abstractEnWe construct for every half-translation surface a tessellation of the Poincare upper half plane generalising the Farey tessellation for a flat torus. By construction, the Veech group stabilizes this tessellation. As a consequence, we get a bound on the volume of the corresponding Teichm\"uller curve for a lattice surface (Veech surface). There is a natural graph underlying this tessellation on which the affine group acts by automorphisms. We provide algorithms to determine a `coarse' fundamental domain and a generating set for the Veech group based on this graph. We also show that this graph has infinite diameter and is Gromov hyperbolic.
dc.language.isoen
dc.publisherSpringer
dc.title.enTopological Veech dichotomy and tessellations of the hyperbolic plane
dc.typeArticle de revue
dc.identifier.doi10.1007/s11856-022-2320-8
dc.subject.halMathématiques [math]/Topologie géométrique [math.GT]
dc.subject.halMathématiques [math]/Théorie des groupes [math.GR]
dc.identifier.arxiv1808.09329
bordeaux.journalIsrael Journal of Mathematics
bordeaux.page577-616
bordeaux.volume249
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01925664
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01925664v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Israel%20Journal%20of%20Mathematics&rft.date=2022-06&rft.volume=249&rft.issue=2&rft.spage=577-616&rft.epage=577-616&rft.eissn=0021-2172&rft.issn=0021-2172&rft.au=NGUYEN,%20Duc-Manh&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée