Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorCOULANGEON, Renaud
dc.date.accessioned2024-04-04T03:04:07Z
dc.date.available2024-04-04T03:04:07Z
dc.date.created2006-12-14
dc.date.issued2006
dc.identifier.issn1073-7928
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193122
dc.description.abstractEnWe set up a connection between the theory of spherical designs and the question of minima of Epstein's zeta function. More precisely, we prove that a Euclidean lattice, all layers of which hold a 4-design, achieves a local minimum of the Epstein's zeta function, at least at any real s>n/2. We deduce from this a new proof of Sarnak and Strömbergsson's theorem asserting that the root lattices D4 and E8, as well as the Leech lattice, achieve a strict local minimum of the Epstein's zeta function at any s>0. Furthermore, our criterion enables us to extend their theorem to all the so-called extremal modular lattices(up to certain restrictions) using a theorem of Bachoc and Venkov, and to other classical families of lattices (e.g. the Barnes-Wall lattices).
dc.language.isoen
dc.publisherOxford University Press (OUP)
dc.title.enSpherical designs and zeta functions of lattices
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxivmath/0611735
bordeaux.journalInternational Mathematics Research Notices
bordeaux.pageArt. ID 49620, 16 pp.
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00192934
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00192934v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Mathematics%20Research%20Notices&rft.date=2006&rft.spage=Art.%20ID%2049620,%2016%20pp.&rft.epage=Art.%20ID%2049620,%2016%20pp.&rft.eissn=1073-7928&rft.issn=1073-7928&rft.au=COULANGEON,%20Renaud&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée