Spherical designs and zeta functions of lattices
Language
en
Article de revue
This item was published in
International Mathematics Research Notices. 2006p. Art. ID 49620, 16 pp.
Oxford University Press (OUP)
English Abstract
We set up a connection between the theory of spherical designs and the question of minima of Epstein's zeta function. More precisely, we prove that a Euclidean lattice, all layers of which hold a 4-design, achieves a local ...Read more >
We set up a connection between the theory of spherical designs and the question of minima of Epstein's zeta function. More precisely, we prove that a Euclidean lattice, all layers of which hold a 4-design, achieves a local minimum of the Epstein's zeta function, at least at any real s>n/2. We deduce from this a new proof of Sarnak and Strömbergsson's theorem asserting that the root lattices D4 and E8, as well as the Leech lattice, achieve a strict local minimum of the Epstein's zeta function at any s>0. Furthermore, our criterion enables us to extend their theorem to all the so-called extremal modular lattices(up to certain restrictions) using a theorem of Bachoc and Venkov, and to other classical families of lattices (e.g. the Barnes-Wall lattices).Read less <
Origin
Hal imported