An approximation of the M 2 closure: application to radiotherapy dose simulation
hal.structure.identifier | Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP] | |
dc.contributor.author | PICHARD, T | |
hal.structure.identifier | Free University of Berlin [FU] | |
dc.contributor.author | ALLDREDGE, G | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BRULL, Stéphane | |
hal.structure.identifier | Laboratoire des Composites Thermostructuraux [LCTS] | |
dc.contributor.author | DUBROCA, B | |
hal.structure.identifier | Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT] | |
dc.contributor.author | FRANK, M | |
dc.date.accessioned | 2024-04-04T03:03:55Z | |
dc.date.available | 2024-04-04T03:03:55Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0885-7474 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193109 | |
dc.description.abstractEn | Particle transport in radiation therapy can be modelled by a kinetic equation which must be solved numerically. Unfortunately, the numerical solution of such equations is generally too expensive for applications in medical centers. Moment methods provide a hierarchy of models used to reduce the numerical cost of these simulations while preserving basic properties of the solutions. Moment models require a closure because they have more unknowns than equations. The entropy-based closure is based on the physical description of the particle interactions and provides desirable properties. However, computing this closure is expensive. We propose an approximation of the closure for the first two models in the hierarchy, the M 1 and M 2 models valid in one, two or three dimensions of space. Compared to other approximate closures, our method works in multiple dimensions. We obtain the approximation by a careful study of the domain of realizability and by invariance properties of the entropy minimizer. The M 2 model is shown to provide significantly better accuracy than the M 1 model for the numerical simulation of a dose computation in radiotherapy. We propose a numerical solver using those approximated closures. Numerical experiments in dose computation test cases show that the new method is more efficient compared to numerical solution of the minimum entropy problem using standard software tools. | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.subject.en | Radiotherapy dose computation | |
dc.subject.en | Entropy-based closure | |
dc.subject.en | Moment models | |
dc.title.en | An approximation of the M 2 closure: application to radiotherapy dose simulation | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
bordeaux.journal | Journal of Scientific Computing | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01934319 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01934319v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Scientific%20Computing&rft.date=2017&rft.eissn=0885-7474&rft.issn=0885-7474&rft.au=PICHARD,%20T&ALLDREDGE,%20G&BRULL,%20St%C3%A9phane&DUBROCA,%20B&FRANK,%20M&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |