Show simple item record

hal.structure.identifierCentre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
dc.contributor.authorPICHARD, T
hal.structure.identifierFree University of Berlin [FU]
dc.contributor.authorALLDREDGE, G
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBRULL, Stéphane
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorDUBROCA, B
hal.structure.identifierKarlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
dc.contributor.authorFRANK, M
dc.date.accessioned2024-04-04T03:03:55Z
dc.date.available2024-04-04T03:03:55Z
dc.date.issued2017
dc.identifier.issn0885-7474
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193109
dc.description.abstractEnParticle transport in radiation therapy can be modelled by a kinetic equation which must be solved numerically. Unfortunately, the numerical solution of such equations is generally too expensive for applications in medical centers. Moment methods provide a hierarchy of models used to reduce the numerical cost of these simulations while preserving basic properties of the solutions. Moment models require a closure because they have more unknowns than equations. The entropy-based closure is based on the physical description of the particle interactions and provides desirable properties. However, computing this closure is expensive. We propose an approximation of the closure for the first two models in the hierarchy, the M 1 and M 2 models valid in one, two or three dimensions of space. Compared to other approximate closures, our method works in multiple dimensions. We obtain the approximation by a careful study of the domain of realizability and by invariance properties of the entropy minimizer. The M 2 model is shown to provide significantly better accuracy than the M 1 model for the numerical simulation of a dose computation in radiotherapy. We propose a numerical solver using those approximated closures. Numerical experiments in dose computation test cases show that the new method is more efficient compared to numerical solution of the minimum entropy problem using standard software tools.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enRadiotherapy dose computation
dc.subject.enEntropy-based closure
dc.subject.enMoment models
dc.title.enAn approximation of the M 2 closure: application to radiotherapy dose simulation
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalJournal of Scientific Computing
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01934319
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01934319v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Scientific%20Computing&rft.date=2017&rft.eissn=0885-7474&rft.issn=0885-7474&rft.au=PICHARD,%20T&ALLDREDGE,%20G&BRULL,%20St%C3%A9phane&DUBROCA,%20B&FRANK,%20M&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record