Show simple item record

dc.contributor.authorGOLINSKII, L
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorKUPIN, Stanislas
dc.date.accessioned2024-04-04T03:03:26Z
dc.date.available2024-04-04T03:03:26Z
dc.date.created2015
dc.date.issued2015
dc.identifier.issn1029-3531
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193072
dc.description.abstractEnLet H_0 = −d^2/dx^2 + V_0 be an infinite band Schrödinger operator on L^2(R) with a real-valued potential V_0 ∈ L^\infty (R). We study its complex perturbation H = H_0+V , defined in the form sense, and obtain the Lieb-Thirring type inequalities for the rate of convergence of the discrete spectrum of H to the joint essential spectrum. The assumptions on V vary depending on the sign of Re V .
dc.language.isoen
dc.publisherInstitute of Mathematics NAS of Ukraine
dc.subject.enSchrödinger operator
dc.subject.eninfinite band spectrum
dc.subject.enLieb-Thirring type inequalities
dc.subject.enrelatively compact perturbation
dc.title.enON COMPLEX PERTURBATIONS OF INFINITE BAND SCHRÖDINGER OPERATORS
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Théorie spectrale [math.SP]
bordeaux.journalMethods in functional analysis and topology
bordeaux.page237-245
bordeaux.volume21
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01950411
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01950411v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Methods%20in%20functional%20analysis%20and%20topology&rft.date=2015&rft.volume=21&rft.issue=3&rft.spage=237-245&rft.epage=237-245&rft.eissn=1029-3531&rft.issn=1029-3531&rft.au=GOLINSKII,%20L&KUPIN,%20Stanislas&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record