Afficher la notice abrégée

hal.structure.identifierModélisation, Information et Systèmes - UR UPJV 4290 [MIS]
hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
dc.contributor.authorIONICA, Sorina
hal.structure.identifierCryptology, arithmetic : algebraic methods for better algorithms [CARAMBA]
dc.contributor.authorTHOMÉ, Emmanuel
dc.date.accessioned2024-04-04T03:02:19Z
dc.date.available2024-04-04T03:02:19Z
dc.date.created2015-01-01
dc.date.issued2020-02
dc.identifier.issn0022-314X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192970
dc.description.abstractEnAn isogeny graph is a graph whose vertices are principally polarizable abelian varieties and whose edges are isogenies between these varieties. In his thesis, Kohel describes the structure of isogeny graphs for elliptic curves and shows that one may compute the endomorphism ring of an elliptic curve defined over a finite field by using a depth-first search (DFS) algorithm in the graph. In dimension 2, the structure of isogeny graphs is less understood and existing algorithms for computing endomorphism rings are very expensive. In this article, we show that, under certain conditions, the problem of determining the endomorphism ring can also be solved in genus 2 with a DFS-based algorithm. We consider the case of genus-2 Jacobians with complex multiplication, with the assumptions that the real multiplication subring has class number one and is locally maximal at ℓ, for ℓ a fixed prime. We describe the isogeny graphs in that case, by considering cyclic isogenies of degree ℓ, under the assumption that there is an ideal of norm ℓ in K0 which is generated by a totally positive algebraic integer. The resulting algorithm is implemented over finite fields, and examples are provided. To the best of our knowledge, this is the first DFS-based algorithm in genus 2.
dc.language.isoen
dc.publisherElsevier
dc.subject.encomputation
dc.subject.enendomorphism ring
dc.subject.engenus 2
dc.subject.enisogeny graph
dc.title.enIsogeny graphs with maximal real multiplication
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jnt.2019.06.019
dc.subject.halMathématiques [math]/Mathématiques générales [math.GM]
dc.subject.halInformatique [cs]/Cryptographie et sécurité [cs.CR]
dc.identifier.arxiv1407.6672
bordeaux.journalJournal of Number Theory
bordeaux.page385-422
bordeaux.volume207
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00967742
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00967742v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Number%20Theory&rft.date=2020-02&rft.volume=207&rft.spage=385-422&rft.epage=385-422&rft.eissn=0022-314X&rft.issn=0022-314X&rft.au=IONICA,%20Sorina&THOM%C3%89,%20Emmanuel&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée