Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorARNAUDON, Marc
hal.structure.identifierCentre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
hal.structure.identifierQuality control and dynamic reliability [CQFD]
dc.contributor.authorDEL MORAL, Pierre
dc.date.accessioned2024-04-04T03:02:17Z
dc.date.available2024-04-04T03:02:17Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192966
dc.description.abstractEnThe article presents a novel variational calculus to analyze the stability and the propagation of chaos properties of nonlinear and interacting diffusions. This differential methodology combines gradient flow estimates with backward stochastic interpolations, Lyapunov linearization techniques as well as spectral theory. This framework applies to a large class of stochastic models including non homogeneous diffusions, as well as stochastic processes evolving on differentiable manifolds, such as constraint-type embedded manifolds on Euclidian spaces and manifolds equipped with some Riemannian metric. We derive uniform as well as almost sure exponential contraction inequalities at the level of the nonlinear diffusion flow, yielding what seems to be the first result of this type for this class of models. Uniform propagation of chaos properties w.r.t. the time parameter are also provided. Illustrations are provided in the context of a class of gradient flow diffusions arising in fluid mechanics and granular media literature. The extended versions of these nonlinear Langevin-type diffusions on Riemannian manifolds are also discussed.
dc.language.isoen
dc.subject.enRiemannian manifolds Mathematics
dc.subject.enNonlinear diffusions
dc.subject.enWasserstein distance
dc.subject.enContraction inequalities
dc.subject.enVariational equations
dc.subject.enGradient flows
dc.subject.enRiemannian manifold
dc.subject.enLogarithmic norms
dc.subject.enMean field particle systems
dc.title.enA variational approach to nonlinear and interacting diffusions
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Probabilités [math.PR]
dc.identifier.arxiv1812.04269
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01950673
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01950673v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=ARNAUDON,%20Marc&DEL%20MORAL,%20Pierre&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record