Afficher la notice abrégée

hal.structure.identifierDepartment of Applied Physics and Applied Mathematics [New York] [APAM]
dc.contributor.authorBAL, Guillaume
hal.structure.identifierLaboratoire de Probabilités et Modèles Aléatoires [LPMA]
hal.structure.identifierLaboratoire Jacques-Louis Lions [LJLL]
dc.contributor.authorGARNIER, Josselin
hal.structure.identifierInstitut de Mathématiques de Toulouse UMR5219 [IMT]
dc.contributor.authorMOTSCH, Sébastien
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierCentre d'Etudes Lasers Intenses et Applications [CELIA]
dc.contributor.authorPERRIER, Vincent
dc.date.accessioned2024-04-04T03:01:59Z
dc.date.available2024-04-04T03:01:59Z
dc.date.created2008
dc.date.issued2008
dc.identifier.issn0921-7134
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192938
dc.description.abstractEnThis paper concerns the homogenization of a one-dimensional elliptic equation with oscillatory random coefficients. It is well-known that the random solution to the elliptic equation converges to the solution of an effective medium elliptic equation in the limit of a vanishing correlation length in the random medium. It is also well-known that the corrector to homogenization, i.e., the difference between the random solution and the homogenized solution, converges in distribution to a Gaussian process when the correlations in the random medium are sufficiently short-range. Moreover, the limiting process may be written as a stochastic integral with respect to standard Brownian motion. We generalize the result to a large class of processes with long-range correlations. In this setting, the corrector also converges to a Gaussian random process, which has an interpretation as a stochastic integral with respect to fractional Brownian motion. Moreover, we show that the longer the range of the correlations, the larger is the amplitude of the corrector. Derivations are based on a careful analysis of random oscillatory integrals of processes with long-range correlations. We also make use of the explicit expressions for the solutions to the one-dimensional elliptic equation.
dc.language.isoen
dc.publisherIOS Press
dc.title.enRandom integrals and correctors in homogenization
dc.typeArticle de revue
dc.identifier.doi10.3233/ASY-2008-0890
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalAsymptotic Analysis
bordeaux.page1-26
bordeaux.volume59
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1-2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00203562
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00203562v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Asymptotic%20Analysis&rft.date=2008&rft.volume=59&rft.issue=1-2&rft.spage=1-26&rft.epage=1-26&rft.eissn=0921-7134&rft.issn=0921-7134&rft.au=BAL,%20Guillaume&GARNIER,%20Josselin&MOTSCH,%20S%C3%A9bastien&PERRIER,%20Vincent&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée