Show simple item record

dc.contributor.authorPESHKOV, Ilya
dc.contributor.authorBOSCHERI, Walter
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorLOUBÈRE, Raphaël
dc.contributor.authorROMENSKI, Evgeniy
hal.structure.identifierDepartment of civil, environmental and mechanical engineering [Trento]
dc.contributor.authorDUMBSER, Michael
dc.date.issued2019
dc.identifier.issn0021-9991
dc.description.abstractEnThe aim of this paper is to compare a hyperelastic with a hypoelastic model describing the Eulerian dynamics of solids in the context of non-linear elastoplastic deformations. Specifically, we consider the well-known hypoelastic Wilkins model, which is compared against a hyperelastic model based on the work of Godunov and Romenski. First, we discuss some general conceptual differences between the two approaches. Second, a detailed study of both models is proposed, where differences are made evident at the aid of deriving a hypoelastic-type model corresponding to the hyperelastic model and a particular equation of state used in this paper. Third, using the same high order ADER Finite Volume and Discontinuous Galerkin methods on fixed and moving unstructured meshes for both models, a wide range of numerical benchmark test problems has been solved. The numerical solutions obtained for the two different models are directly compared with each other. For small elastic deformations, the two models produce very similar solutions that are close to each other. However, if large elastic or elastoplastic deformations occur, the solutions present larger differences.
dc.description.sponsorshipCentre International de Mathématiques et d'Informatique (de Toulouse) - ANR-11-LABX-0040
dc.description.sponsorshipUniversité Fédérale de Toulouse - ANR-11-IDEX-0002
dc.language.isoen
dc.publisherElsevier
dc.title.enTheoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jcp.2019.02.039
dc.subject.halPhysique [physics]
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]
dc.identifier.arxiv1806.00706
bordeaux.journalJournal of Computational Physics
bordeaux.page481-521
bordeaux.volume387
bordeaux.peerReviewedoui
hal.identifierhal-02044099
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02044099v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2019&rft.volume=387&rft.spage=481-521&rft.epage=481-521&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=PESHKOV,%20Ilya&BOSCHERI,%20Walter&LOUB%C3%88RE,%20Rapha%C3%ABl&ROMENSKI,%20Evgeniy&DUMBSER,%20Michael&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record