Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorFU, Xiaoming
dc.date.accessioned2024-04-04T03:01:22Z
dc.date.available2024-04-04T03:01:22Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192894
dc.description.abstractEnIn this paper, we consider a stochastic epidemic model with time delay and general incidence rate. We first prove the existence and uniqueness of the global positive solution. By using the Krylov-Bogoliubov method, we obtain the existence of invariant measures. Furthermore , we study a special case where the incidence rate is bilinear with distributed time delay. When the basic reproduction number R0 < 1, the analysis of the asymptotic behavior around the disease-free equilibrium E0 is provided while when R0 > 1, we prove that the invariant measure is unique and ergodic. The numerical simulations also validate our analytical results.
dc.language.isoen
dc.subject.enAsymptotic behavior
dc.subject.enInvariant measure
dc.subject.enGeneral incidence rate
dc.subject.enStochastic delayed SIRS model
dc.title.enOn invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Mathématiques générales [math.GM]
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologie
dc.identifier.arxiv1806.08696
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01816831
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01816831v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.au=FU,%20Xiaoming&amp;rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record