Smooth curves having a large automorphism $p$-group in characteristic $p>0$.
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MATIGNON, Michel | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | ROCHER, Magali | |
dc.date.accessioned | 2024-04-04T03:00:42Z | |
dc.date.available | 2024-04-04T03:00:42Z | |
dc.date.created | 2008-01-24 | |
dc.date.issued | 2008 | |
dc.identifier.issn | 1937-0652 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192840 | |
dc.description.abstractEn | Let $k$ be an algebraically closed field of characteristic $p>0$ and $C$ a connected nonsingular projective curve over $k$ with genus $g \geq 2$. This paper continues the work begun by Lehr and Matignon, namely the study of "big actions", i.e. the pairs $(C,G)$ where $G$ is a $p$-subgroup of the $k$-automorphism group of $C$ such that$\frac{|G|}{g} >\frac{2\,p}{p-1}$. If $G_2$ denotes the second ramification group of $G$ at the unique ramification point of the cover $C \rightarrow C/G$, we display necessary conditions on $G_2$ for $(C,G)$ to be a big action, which allows us to pursue the classification of big actions. Our main source of examples comes from the construction of curves with many rational points using ray class field theory for global function fields, as initiated by J-P. Serre and followed by Lauter and Auer. In particular, we obtain explicit examples of big actions with $G_2$ abelian of large exponent. | |
dc.language.iso | en | |
dc.publisher | Mathematical Sciences Publishers | |
dc.title.en | Smooth curves having a large automorphism $p$-group in characteristic $p>0$. | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.subject.hal | Mathématiques [math]/Géométrie algébrique [math.AG] | |
dc.identifier.arxiv | 0801.1942 | |
bordeaux.journal | Algebra & Number Theory | |
bordeaux.page | 887-926 | |
bordeaux.volume | 2 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 8 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00204107 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00204107v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Algebra%20&%20Number%20Theory&rft.date=2008&rft.volume=2&rft.issue=8&rft.spage=887-926&rft.epage=887-926&rft.eissn=1937-0652&rft.issn=1937-0652&rft.au=MATIGNON,%20Michel&ROCHER,%20Magali&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |