Multi-physics Optimal Transportation and Image Interpolation
| hal.structure.identifier | Equations aux Dérivées Partielles [EDP] | |
| dc.contributor.author | HUG, Romain | |
| hal.structure.identifier | Equations aux Dérivées Partielles [EDP] | |
| dc.contributor.author | MAITRE, Emmanuel | |
| hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
| dc.contributor.author | PAPADAKIS, Nicolas | |
| dc.date.accessioned | 2024-04-04T03:00:23Z | |
| dc.date.available | 2024-04-04T03:00:23Z | |
| dc.date.created | 2014-05 | |
| dc.date.issued | 2015-11 | |
| dc.identifier.issn | 0764-583X | |
| dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192812 | |
| dc.description.abstractEn | Optimal transportation theory is a powerful tool to deal with image interpolation. This was first investigated by Benamou and Brenier \cite{BB00} where an algorithm based on the minimization of a kinetic energy under a conservation of mass constraint was devised. By structure, this algorithm does not preserve image regions along the optimal interpolation path, and it is actually not very difficult to exhibit test cases where the algorithm produces a path of images where high density regions split at the beginning before merging back at its end. However, in some applications to image interpolation this behaviour is not physically realistic. Hence, this paper aims at studying how some physics can be added to the optimal transportation theory, how to construct algorithms to compute solutions to the corresponding optimization problems and how to apply the proposed methods to image interpolation. | |
| dc.description.sponsorship | Transport Optimal et Modèles Multiphysiques de l'Image - ANR-11-BS01-0014 | |
| dc.language.iso | en | |
| dc.publisher | EDP Sciences | |
| dc.subject.en | image multiphysics | |
| dc.subject.en | Optimal transportation | |
| dc.subject.en | proximal splitting method | |
| dc.subject.en | non-convex optimization | |
| dc.title.en | Multi-physics Optimal Transportation and Image Interpolation | |
| dc.type | Article de revue | |
| dc.identifier.doi | 10.1051/m2an/2015038 | |
| dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
| dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
| dc.subject.hal | Informatique [cs]/Traitement des images | |
| dc.subject.hal | Mathématiques [math]/Optimisation et contrôle [math.OC] | |
| bordeaux.journal | ESAIM: Mathematical Modelling and Numerical Analysis | |
| bordeaux.page | 1671-1692 | |
| bordeaux.volume | 49 | |
| bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
| bordeaux.issue | 6 | |
| bordeaux.institution | Université de Bordeaux | |
| bordeaux.institution | Bordeaux INP | |
| bordeaux.institution | CNRS | |
| bordeaux.peerReviewed | oui | |
| hal.identifier | hal-00998370 | |
| hal.version | 1 | |
| hal.popular | non | |
| hal.audience | Internationale | |
| hal.origin.link | https://hal.archives-ouvertes.fr//hal-00998370v1 | |
| bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ESAIM:%20Mathematical%20Modelling%20and%20Numerical%20Analysis&rft.date=2015-11&rft.volume=49&rft.issue=6&rft.spage=1671-1692&rft.epage=1671-1692&rft.eissn=0764-583X&rft.issn=0764-583X&rft.au=HUG,%20Romain&MAITRE,%20Emmanuel&PAPADAKIS,%20Nicolas&rft.genre=article |
Files in this item
| Files | Size | Format | View |
|---|---|---|---|
|
There are no files associated with this item. |
|||