Convergence rates of an inertial gradient descent algorithm under growth and flatness conditions
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | APIDOPOULOS, Vassilis | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | AUJOL, Jean-François | |
hal.structure.identifier | Institut National des Sciences Appliquées - Toulouse [INSA Toulouse] | |
hal.structure.identifier | Institut de Mathématiques de Toulouse UMR5219 [IMT] | |
dc.contributor.author | DOSSAL, Charles | |
hal.structure.identifier | Institut de Mathématiques de Toulouse UMR5219 [IMT] | |
hal.structure.identifier | Équipe Recherche Opérationnelle, Optimisation Combinatoire et Contraintes [LAAS-ROC] | |
dc.contributor.author | RONDEPIERRE, Aude | |
dc.date.accessioned | 2024-04-04T02:59:53Z | |
dc.date.available | 2024-04-04T02:59:53Z | |
dc.date.issued | 2020-02 | |
dc.identifier.issn | 0025-5610 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192779 | |
dc.description.abstractEn | In this paper we study the convergence properties of a Nesterov’s family of inertial schemes which is a specific case of inertial Gradient Descent algorithm in the context of a smooth convex minimization problem, under some additional hypotheses on the local geometry of the objective function F, such as the growth (or Łojasiewicz) condition. In particular we study the different convergence rates for the objective function and the local variation, depending on these geometric conditions. In this setting we can give optimal convergence rates for this Nesterov scheme. Our analysis shows that there are some situations when Nesterov’s family of inertial schemes is asymptotically less efficient than the gradient descent (e.g. in the case when the objective function is quadratic). | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.title.en | Convergence rates of an inertial gradient descent algorithm under growth and flatness conditions | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s10107-020-01476-3 | |
dc.subject.hal | Mathématiques [math]/Optimisation et contrôle [math.OC] | |
bordeaux.journal | Mathematical Programming | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01965095 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01965095v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Programming&rft.date=2020-02&rft.eissn=0025-5610&rft.issn=0025-5610&rft.au=APIDOPOULOS,%20Vassilis&AUJOL,%20Jean-Fran%C3%A7ois&DOSSAL,%20Charles&RONDEPIERRE,%20Aude&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |