Convergence rates of an inertial gradient descent algorithm under growth and flatness conditions
DOSSAL, Charles
Institut National des Sciences Appliquées - Toulouse [INSA Toulouse]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Leer más >
Institut National des Sciences Appliquées - Toulouse [INSA Toulouse]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
DOSSAL, Charles
Institut National des Sciences Appliquées - Toulouse [INSA Toulouse]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Institut National des Sciences Appliquées - Toulouse [INSA Toulouse]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
RONDEPIERRE, Aude
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Équipe Recherche Opérationnelle, Optimisation Combinatoire et Contraintes [LAAS-ROC]
< Leer menos
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Équipe Recherche Opérationnelle, Optimisation Combinatoire et Contraintes [LAAS-ROC]
Idioma
en
Article de revue
Este ítem está publicado en
Mathematical Programming. 2020-02
Springer Verlag
Resumen en inglés
In this paper we study the convergence properties of a Nesterov’s family of inertial schemes which is a specific case of inertial Gradient Descent algorithm in the context of a smooth convex minimization problem, under ...Leer más >
In this paper we study the convergence properties of a Nesterov’s family of inertial schemes which is a specific case of inertial Gradient Descent algorithm in the context of a smooth convex minimization problem, under some additional hypotheses on the local geometry of the objective function F, such as the growth (or Łojasiewicz) condition. In particular we study the different convergence rates for the objective function and the local variation, depending on these geometric conditions. In this setting we can give optimal convergence rates for this Nesterov scheme. Our analysis shows that there are some situations when Nesterov’s family of inertial schemes is asymptotically less efficient than the gradient descent (e.g. in the case when the objective function is quadratic).< Leer menos
Orígen
Importado de HalCentros de investigación