Afficher la notice abrégée

hal.structure.identifierDepartment of Mathematics and Computer Science [Emory University]
dc.contributor.authorBARONE, Alessandro
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
dc.contributor.authorCARLINO, Michele Giuliano
hal.structure.identifierUniversità Campus Bio-Medico di Roma / University Campus Bio-Medico of Rome [ UCBM]
dc.contributor.authorGIZZI, Alessio
hal.structure.identifierModeling and Scientific Computing [Milano] [MOX]
dc.contributor.authorPEROTTO, Simona
hal.structure.identifierDepartment of Mathematics and Computer Science [Emory University]
dc.contributor.authorVENEZIANI, Alessandro
dc.date.accessioned2024-04-04T02:58:13Z
dc.date.available2024-04-04T02:58:13Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192637
dc.description.abstractEnWhile the potential groundbreaking role of mathematical modeling in electrophysiology has been demonstrated for therapies like cardiac resynchronization or catheter ablation, its extensive use in clinics is prevented by the need of an accurate customized conductivity identification. Data assimilation techniques are, in general, used to identify parameters that cannot be measured directly, especially in patient-specific settings. Yet, they may be computationally demanding. This conflicts with the clinical timelines and volumes of patients to analyze. In this paper, we adopt a model reduction technique, developed by F. Chinesta and his collaborators in the last 15 years, called Proper Generalized Decomposition (PGD), to accelerate the estimation of the cardiac conductivities required in the modeling of the cardiac electrical dynamics. Specifically, we resort to the Monodomain Inverse Conductivity Problem (MICP) deeply investigated in the literature in the last five years. We provide a significant proof of concept that PGD is a breakthrough in solving the MICP within reasonable timelines. As PGD relies on the offline/online paradigm and does not need any preliminary knowledge of the high-fidelity solution, we show that the PGD online phase estimates the conductivities in real-time for both two-dimensional and three-dimensional cases, including a patient-specific ventricle.
dc.language.isoen
dc.subject.enComputational Electrophysiology
dc.subject.enModel Order Reduction
dc.subject.enData Assimilation
dc.subject.enProper Generalized Decomposition
dc.subject.enParameter Identification
dc.title.enEfficient Estimation of Cardiac Conductivities: a Proper Generalized Decomposition Approach
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-02417508
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02417508v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BARONE,%20Alessandro&CARLINO,%20Michele%20Giuliano&GIZZI,%20Alessio&PEROTTO,%20Simona&VENEZIANI,%20Alessandro&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée