A variational approach to nonlinear and interacting diffusions
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | ARNAUDON, Marc | |
hal.structure.identifier | Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP] | |
hal.structure.identifier | Quality control and dynamic reliability [CQFD] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | DEL MORAL, Pierre | |
dc.date.accessioned | 2024-04-04T02:57:58Z | |
dc.date.available | 2024-04-04T02:57:58Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0736-2994 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192610 | |
dc.description.abstractEn | The article presents a novel variational calculus to analyze the stability and the propagation of chaos properties of nonlinear and interacting diffusions. This differential methodology combines gradient flow estimates with backward stochastic interpolations, Lyapunov linearization techniques as well as spectral theory. This framework applies to a large class of stochastic models including nonhomogeneous diffusions, as well as stochastic processes evolving on differentiable manifolds, such as constraint-type embedded manifolds on Euclidian spaces and manifolds equipped with some Riemannian metric. We derive uniform as well as almost sure exponential contraction inequalities at the level of the nonlinear diffusion flow, yielding what seems to be the first result of this type for this class of models. Uniform propagation of chaos properties w.r.t. the time parameter is also provided. Illustrations are provided in the context of a class of gradient flow diffusions arising in fluid mechanics and granular media literature. The extended versions of these nonlinear Langevin-type diffusions on Riemannian manifolds are also discussed. | |
dc.language.iso | en | |
dc.publisher | Taylor & Francis: STM, Behavioural Science and Public Health Titles | |
dc.subject.en | Nonlinear diffusions | |
dc.subject.en | Mean field particle systems | |
dc.subject.en | Variational equations | |
dc.subject.en | Logarithmic norms | |
dc.subject.en | Gradient flows | |
dc.subject.en | Contraction inequalities | |
dc.subject.en | Wasserstein distance | |
dc.subject.en | Riemannian manifolds | |
dc.title.en | A variational approach to nonlinear and interacting diffusions | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1080/07362994.2019.1609985 | |
dc.subject.hal | Mathématiques [math]/Probabilités [math.PR] | |
dc.identifier.arxiv | 1812.04269 | |
bordeaux.journal | Stochastic Analysis and Applications | |
bordeaux.page | 717-748 | |
bordeaux.volume | 37 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 5 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02429162 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02429162v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Stochastic%20Analysis%20and%20Applications&rft.date=2019&rft.volume=37&rft.issue=5&rft.spage=717-748&rft.epage=717-748&rft.eissn=0736-2994&rft.issn=0736-2994&rft.au=ARNAUDON,%20Marc&DEL%20MORAL,%20Pierre&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |