Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorARNAUDON, Marc
hal.structure.identifierCentre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
hal.structure.identifierQuality control and dynamic reliability [CQFD]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDEL MORAL, Pierre
dc.date.accessioned2024-04-04T02:57:58Z
dc.date.available2024-04-04T02:57:58Z
dc.date.issued2019
dc.identifier.issn0736-2994
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192610
dc.description.abstractEnThe article presents a novel variational calculus to analyze the stability and the propagation of chaos properties of nonlinear and interacting diffusions. This differential methodology combines gradient flow estimates with backward stochastic interpolations, Lyapunov linearization techniques as well as spectral theory. This framework applies to a large class of stochastic models including nonhomogeneous diffusions, as well as stochastic processes evolving on differentiable manifolds, such as constraint-type embedded manifolds on Euclidian spaces and manifolds equipped with some Riemannian metric. We derive uniform as well as almost sure exponential contraction inequalities at the level of the nonlinear diffusion flow, yielding what seems to be the first result of this type for this class of models. Uniform propagation of chaos properties w.r.t. the time parameter is also provided. Illustrations are provided in the context of a class of gradient flow diffusions arising in fluid mechanics and granular media literature. The extended versions of these nonlinear Langevin-type diffusions on Riemannian manifolds are also discussed.
dc.language.isoen
dc.publisherTaylor & Francis: STM, Behavioural Science and Public Health Titles
dc.subject.enNonlinear diffusions
dc.subject.enMean field particle systems
dc.subject.enVariational equations
dc.subject.enLogarithmic norms
dc.subject.enGradient flows
dc.subject.enContraction inequalities
dc.subject.enWasserstein distance
dc.subject.enRiemannian manifolds
dc.title.enA variational approach to nonlinear and interacting diffusions
dc.typeArticle de revue
dc.identifier.doi10.1080/07362994.2019.1609985
dc.subject.halMathématiques [math]/Probabilités [math.PR]
dc.identifier.arxiv1812.04269
bordeaux.journalStochastic Analysis and Applications
bordeaux.page717-748
bordeaux.volume37
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue5
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02429162
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02429162v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Stochastic%20Analysis%20and%20Applications&rft.date=2019&rft.volume=37&rft.issue=5&rft.spage=717-748&rft.epage=717-748&rft.eissn=0736-2994&rft.issn=0736-2994&rft.au=ARNAUDON,%20Marc&DEL%20MORAL,%20Pierre&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée