Mostrar el registro sencillo del ítem

hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorGIDEL, Floriane
hal.structure.identifierEIGSI La Rochelle [EIGSI ]
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorVOYER, Damien
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorPOIGNARD, Clair
dc.date.accessioned2024-04-04T02:57:29Z
dc.date.available2024-04-04T02:57:29Z
dc.date.issued2020-01
dc.identifier.issn0018-9464
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192567
dc.description.abstractEnThe paper deals with two different approaches to model cell aggregates submitted to an electric stimulation, namely the equivalent circuit approach and the theoretical homogenization. For each approach, the effective impedance of the cell aggregate is given, enabling a comparison between the different models. Regarding the circuit approach, a variability in the electric parameters of the circuit in series is known to provide anomalous relaxation similar to a constant phase element model. For lognormal distribution of the parameters, a new link between the effective impedance and both arithmetic and geometric means is given. The second approach deals with the theoretical –but periodic– homogenization approach. The idea is to consider the sample as a periodic aggregate composed of a large number of cells. In each cell the electric potential is governed by the electroquasistatic model. The formal two-scale analysis leads to the so-called bidomain model, enabling a novel definition of the tissue impedance, generalizing the Maxwell-Garnett formula to cells with any geometrical configuration and without any dilution assumption. Interestingly, the microscale cell organization is shown to impact the effective impedance of the sample, linking the cell and the tissue properties
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers
dc.subject.enHomogenization
dc.subject.enNumerical Characterization of Cell Spheroids
dc.subject.enCell Networks
dc.subject.enElectrical Modeling of Cell Aggregates
dc.subject.enMultiscale Modeling
dc.title.enIn Silico Electrical Modeling of Cell Aggregates
dc.typeArticle de revue
dc.identifier.doi10.1109/TMAG.2019.2952156
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalIEEE Transactions on Magnetics
bordeaux.volume56
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02467979
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02467979v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=IEEE%20Transactions%20on%20Magnetics&rft.date=2020-01&rft.volume=56&rft.issue=3&rft.eissn=0018-9464&rft.issn=0018-9464&rft.au=GIDEL,%20Floriane&VOYER,%20Damien&POIGNARD,%20Clair&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem