Show simple item record

hal.structure.identifierAnalysis and Control of Unsteady Models for Engineering Sciences [ACUMES]
dc.contributor.authorCHAHOUR, Keltoum
hal.structure.identifierLaboratoire d'Etudes et Recherche en Mathématiques Appliquées [LERMA]
dc.contributor.authorABOULAICH, Rajae
hal.structure.identifierLaboratoire Jean Alexandre Dieudonné [LJAD]
hal.structure.identifierAnalysis and Control of Unsteady Models for Engineering Sciences [ACUMES]
dc.contributor.authorHABBAL, Abderrahmane
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorZEMZEMI, Nejib
hal.structure.identifierClinique Maarif [Casablanca]
dc.contributor.authorABDELKHIRANE, Cherif
dc.date.accessioned2024-04-04T02:57:24Z
dc.date.available2024-04-04T02:57:24Z
dc.date.issued2020
dc.identifier.issn1748-670X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192563
dc.description.abstractEnFractional flow reserve (FFR) has proved its efficiency in improving patients diagnosis. In this paper, we consider a 2D reconstructed left coronary tree with two artificial lesions of different degrees. We use a generalized fluid model with a Carreau law and implement the Windkessel boundary conditions at the outlets. We introduce our methodology to quantify the FFR, and lead several numerical experiments. For two different finite element meshes, we compare the FFR results for Navier Stokes versus generalized flow models, and for Windkessel versus free outlets boundary conditions. We also used mixed boundary conditions. Our results highlight the fact that free outlets boundary conditions are sensitive to the FFR sensor position. The computational FFR results show that the degree of stenosis is not enough to classify a lesion, while there is a good agreement between Navier Stokes and generalized flow model in classifying the lesions.
dc.language.isoen
dc.publisherHindawi Publishing Corporation
dc.title.enVirtual FFR quantified with a generalized flow model using Windkessel boundary conditions ; Application to a patient-specific coronary tree.
dc.typeArticle de revue
dc.identifier.doi10.1155/2020/3942152
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologie/Cardiologie et système cardiovasculaire
dc.subject.halInformatique [cs]/Modélisation et simulation
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
bordeaux.journalComputational and Mathematical Methods in Medicine
bordeaux.page14
bordeaux.volume2020
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02427411
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02427411v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computational%20and%20Mathematical%20Methods%20in%20Medicine&rft.date=2020&rft.volume=2020&rft.spage=14&rft.epage=14&rft.eissn=1748-670X&rft.issn=1748-670X&rft.au=CHAHOUR,%20Keltoum&ABOULAICH,%20Rajae&HABBAL,%20Abderrahmane&ZEMZEMI,%20Nejib&ABDELKHIRANE,%20Cherif&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record