Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAREGBA-DRIOLLET, Denise
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBRULL, Stéphane
dc.date.accessioned2024-04-04T02:57:17Z
dc.date.available2024-04-04T02:57:17Z
dc.date.issued2020
dc.identifier.issn1539-6746
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192551
dc.description.abstractEnThis paper is devoted to the study of the construction of a viscous approximation of the nonconservative bitemperature Euler system. Starting from a BGK model coupled with Ampère and Poisson equations proposed in [1], we perform a Chapman-Enskog expansion up to order 1 leading to a Navier-Stokes system. Next, we prove that this system is compatible with the entropy of the bitemperature Euler system.
dc.language.isoen
dc.publisherInternational Press
dc.title.enAbout viscous approximations of the bitemperature Euler system
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]
bordeaux.journalCommunications in Mathematical Sciences
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02476761
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02476761v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Communications%20in%20Mathematical%20Sciences&rft.date=2020&rft.eissn=1539-6746&rft.issn=1539-6746&rft.au=AREGBA-DRIOLLET,%20Denise&BRULL,%20St%C3%A9phane&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record