Randomness and non-randomness properties of Piatetski-Shapiro sequences modulo m
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | DESHOUILLERS, Jean-Marc | |
hal.structure.identifier | Vienna University of Technology = Technische Universität Wien [TU Wien] | |
dc.contributor.author | DRMOTA, Michael | |
hal.structure.identifier | Combinatoire, théorie des nombres [CTN] | |
dc.contributor.author | MÜLLNER, Clemens | |
hal.structure.identifier | Institut für Diskrete Mathematik und Geometrie [Wien] | |
dc.contributor.author | SPIEGELHOFFER, Lukas | |
dc.date.accessioned | 2024-04-04T02:56:57Z | |
dc.date.available | 2024-04-04T02:56:57Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0025-5793 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192514 | |
dc.description.abstractEn | We study Piatetski-Shapiro sequences ([n(c)])(n) modulo m, for non-integer c > 1 and positive m, and we are particularly interested in subword occurrences in those sequences. We prove that each block is an element of {0, 1}(k) of length k < c + 1 occurs as a subword with the frequency 2(-k), while there are always blocks that do not occur. In particular, those sequences are not normal. For 1 < c < 2, we estimate the number of subwords from above and below, yielding the fact that our sequences are deterministic and not morphic. Finally, using the Daboussi-Katai criterion, we prove that the sequence [n(c)] modulo m is asymptotically orthogonal to multiplicative functions bounded by 1 and with mean value 0. | |
dc.language.iso | en | |
dc.publisher | University College London | |
dc.title.en | Randomness and non-randomness properties of Piatetski-Shapiro sequences modulo m | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1112/S0025579319000287 | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
bordeaux.journal | Mathematika | |
bordeaux.page | 1051-1073 | |
bordeaux.volume | 65 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 4 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02480007 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02480007v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematika&rft.date=2019&rft.volume=65&rft.issue=4&rft.spage=1051-1073&rft.epage=1051-1073&rft.eissn=0025-5793&rft.issn=0025-5793&rft.au=DESHOUILLERS,%20Jean-Marc&DRMOTA,%20Michael&M%C3%9CLLNER,%20Clemens&SPIEGELHOFFER,%20Lukas&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |