A sufficient condition for $(\theta^N)_N$ to have a distribution modulo one, when $\theta$ is in $\mathbb{F}_2(X)$
| hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
| dc.contributor.author | DESHOUILLERS, Jean-Marc | |
| dc.contributor.author | THANGADURAI, R | |
| dc.date.accessioned | 2024-04-04T02:56:52Z | |
| dc.date.available | 2024-04-04T02:56:52Z | |
| dc.date.issued | 2018 | |
| dc.identifier.issn | 1553-1732 | |
| dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192503 | |
| dc.description.abstractEn | Let θ be a given element in F 2 (X). In this article, we give a sufficient condition for the sequence (θ n) n≥0 to have a distribution modulo 1. | |
| dc.language.iso | en | |
| dc.publisher | State University of West Georgia, Charles University, and DIMATIA | |
| dc.title.en | A sufficient condition for $(\theta^N)_N$ to have a distribution modulo one, when $\theta$ is in $\mathbb{F}_2(X)$ | |
| dc.type | Article de revue | |
| dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
| bordeaux.journal | Integers : Electronic Journal of Combinatorial Number Theory | |
| bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
| bordeaux.institution | Université de Bordeaux | |
| bordeaux.institution | Bordeaux INP | |
| bordeaux.institution | CNRS | |
| bordeaux.peerReviewed | oui | |
| hal.identifier | hal-02480248 | |
| hal.version | 1 | |
| hal.popular | non | |
| hal.audience | Internationale | |
| hal.origin.link | https://hal.archives-ouvertes.fr//hal-02480248v1 | |
| bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Integers%20:%20Electronic%20Journal%20of%20Combinatorial%20Number%20Theory&rft.date=2018&rft.eissn=1553-1732&rft.issn=1553-1732&rft.au=DESHOUILLERS,%20Jean-Marc&THANGADURAI,%20R&rft.genre=article |
Files in this item
| Files | Size | Format | View |
|---|---|---|---|
|
There are no files associated with this item. |
|||