Rational curves on $V_5$ and rational simple connectedness
| hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
| dc.contributor.author | FANELLI, Andrea | |
| hal.structure.identifier | Laboratoire de Mathématiques de Versailles [LMV] | |
| dc.contributor.author | GRUSON, Laurent | |
| hal.structure.identifier | Laboratoire de Mathématiques de Versailles [LMV] | |
| dc.contributor.author | PERRIN, Nicolas | |
| dc.date.accessioned | 2024-04-04T02:56:12Z | |
| dc.date.available | 2024-04-04T02:56:12Z | |
| dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192443 | |
| dc.description.abstractEn | In this paper the notion of rational simple connectedness for the quintic Fano threefold $V_5\subset \mathbb{P}^6$ is studied and unirationality of the moduli spaces $\overline{M}_{0,0}^{\text{bir}}(V_5,d)$, with $d \ge 1$, is proved. Many further unirationality results for special moduli spaces of rational curves on quadric hypersurfaces and del Pezzo surfaces are obtained via explicit birational methods. | |
| dc.language.iso | en | |
| dc.title.en | Rational curves on $V_5$ and rational simple connectedness | |
| dc.type | Document de travail - Pré-publication | |
| dc.subject.hal | Mathématiques [math]/Géométrie algébrique [math.AG] | |
| dc.identifier.arxiv | 1901.06930 | |
| bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
| bordeaux.institution | Université de Bordeaux | |
| bordeaux.institution | Bordeaux INP | |
| bordeaux.institution | CNRS | |
| hal.identifier | hal-02489755 | |
| hal.version | 1 | |
| hal.origin.link | https://hal.archives-ouvertes.fr//hal-02489755v1 | |
| bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=FANELLI,%20Andrea&GRUSON,%20Laurent&PERRIN,%20Nicolas&rft.genre=preprint |
Files in this item
| Files | Size | Format | View |
|---|---|---|---|
|
There are no files associated with this item. |
|||