Show simple item record

hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorGALLINATO, Olivier
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorDENIS DE SENNEVILLE, Baudouin
hal.structure.identifierUniversité Paris 13 [UP13]
hal.structure.identifierCentre de Recherche des Cordeliers [CRC (UMR_S_1138 / U1138)]
dc.contributor.authorSEROR, Olivier
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorPOIGNARD, Clair
dc.date.accessioned2024-04-04T02:56:02Z
dc.date.available2024-04-04T02:56:02Z
dc.date.issued2020-02-28
dc.identifier.issn0973-5348
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192423
dc.description.abstractEnElectroporation ablation is a promising non surgical and minimally invasive technique of tumor ablation, for which no monitoring is currently available. In this paper, we present the recent advances and challenges on the numerical modeling of clinical electroporation ablation of liver tumors. In particular, we show that a nonlinear static electrical model of tissue combined with clinical imaging can give crucial information of the electric field distribution in the clinical configuration. We conclude the paper by presenting some important questions that have to be addressed for an effective impact of computational modeling in clinical practice of electroporation ablation. Mathematics Subject Classification. 35J15, 35J87, 92B.
dc.description.sponsorshipInitiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
dc.description.sponsorshipTranslational Research and Advanced Imaging Laboratory - ANR-10-LABX-0057
dc.language.isoen
dc.publisherEDP Sciences
dc.subject.enNonlinear electrical tissue mode
dc.subject.enClinical electroporation ablation
dc.subject.enComputational tissue electroporation
dc.title.enNumerical modelling challenges for clinical electroporation ablation technique of liver tumors
dc.typeArticle de revue
dc.identifier.doi10.1051/mmnp/2019037
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalMathematical Modelling of Natural Phenomena
bordeaux.volume15
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02493795
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02493795v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Modelling%20of%20Natural%20Phenomena&rft.date=2020-02-28&rft.volume=15&rft.eissn=0973-5348&rft.issn=0973-5348&rft.au=GALLINATO,%20Olivier&DENIS%20DE%20SENNEVILLE,%20Baudouin&SEROR,%20Olivier&POIGNARD,%20Clair&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record