Finiteness of totally geodesic exceptional divisors in Hermitian locally symmetric spaces
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | KOZIARZ, Vincent | |
hal.structure.identifier | Institut Élie Cartan de Lorraine [IECL] | |
dc.contributor.author | MAUBON, Julien | |
dc.date.accessioned | 2024-04-04T02:55:42Z | |
dc.date.available | 2024-04-04T02:55:42Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0037-9484 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192389 | |
dc.description.abstractEn | We prove that on a smooth complex surface which is a compact quotient of the bidisc or of the 2-ball, there is at most a finite number of totally geodesic curves with negative self-intersection. More generally, there are only finitely many exceptional totally geodesic divisors in a compact Hermitian locally symmetric space of noncompact type of dimension at least 2. This is deduced from a convergence result for currents of integration along totally geodesic subvarieties in compact Hermitian locally symmetric spaces, which itself follows from an equidistribution theorem for totally geodesic submanifolds in a locally symmetric space of finite volume. | |
dc.language.iso | en | |
dc.publisher | Société Mathématique de France | |
dc.subject.en | Bounded Negativity conjecture | |
dc.subject.en | Hermitian locally symmetric spaces | |
dc.subject.en | totally geodesic submanifold | |
dc.subject.en | equidistribution | |
dc.subject.en | negative curve | |
dc.subject.en | exceptional divisor | |
dc.subject.en | current of integration | |
dc.title.en | Finiteness of totally geodesic exceptional divisors in Hermitian locally symmetric spaces | |
dc.type | Article de revue | |
dc.identifier.doi | 10.24033/bsmf.2767 | |
dc.subject.hal | Mathématiques [math]/Géométrie différentielle [math.DG] | |
bordeaux.journal | Bulletin de la société mathématique de France | |
bordeaux.page | 613-631 | |
bordeaux.volume | 146 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 4 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02500889 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02500889v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Bulletin%20de%20la%20soci%C3%A9t%C3%A9%20math%C3%A9matique%20de%20France&rft.date=2018&rft.volume=146&rft.issue=4&rft.spage=613-631&rft.epage=613-631&rft.eissn=0037-9484&rft.issn=0037-9484&rft.au=KOZIARZ,%20Vincent&MAUBON,%20Julien&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |