Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorKOZIARZ, Vincent
hal.structure.identifierInstitut Élie Cartan de Lorraine [IECL]
dc.contributor.authorMAUBON, Julien
dc.date.accessioned2024-04-04T02:55:42Z
dc.date.available2024-04-04T02:55:42Z
dc.date.issued2018
dc.identifier.issn0037-9484
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192389
dc.description.abstractEnWe prove that on a smooth complex surface which is a compact quotient of the bidisc or of the 2-ball, there is at most a finite number of totally geodesic curves with negative self-intersection. More generally, there are only finitely many exceptional totally geodesic divisors in a compact Hermitian locally symmetric space of noncompact type of dimension at least 2. This is deduced from a convergence result for currents of integration along totally geodesic subvarieties in compact Hermitian locally symmetric spaces, which itself follows from an equidistribution theorem for totally geodesic submanifolds in a locally symmetric space of finite volume.
dc.language.isoen
dc.publisherSociété Mathématique de France
dc.subject.enBounded Negativity conjecture
dc.subject.enHermitian locally symmetric spaces
dc.subject.entotally geodesic submanifold
dc.subject.enequidistribution
dc.subject.ennegative curve
dc.subject.enexceptional divisor
dc.subject.encurrent of integration
dc.title.enFiniteness of totally geodesic exceptional divisors in Hermitian locally symmetric spaces
dc.typeArticle de revue
dc.identifier.doi10.24033/bsmf.2767
dc.subject.halMathématiques [math]/Géométrie différentielle [math.DG]
bordeaux.journalBulletin de la société mathématique de France
bordeaux.page613-631
bordeaux.volume146
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02500889
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02500889v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Bulletin%20de%20la%20soci%C3%A9t%C3%A9%20math%C3%A9matique%20de%20France&rft.date=2018&rft.volume=146&rft.issue=4&rft.spage=613-631&rft.epage=613-631&rft.eissn=0037-9484&rft.issn=0037-9484&rft.au=KOZIARZ,%20Vincent&MAUBON,%20Julien&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record