Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAMAR, Eric
dc.date.accessioned2024-04-04T02:55:33Z
dc.date.available2024-04-04T02:55:33Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192374
dc.description.abstractEnLet $S$ be a sequence of points in ${\mathbb{D}}^{n}.$ Suppose that $S$ is $H^{p}$ interpolating. Then we prove that the sequence $S$ is Carleson, provided that $p>2.$ We also give a sufficient condition, in terms of dual boundedness and square Carleson measure, for $S$ to be an $H^{p}$ interpolating sequence.
dc.language.isoen
dc.title.enCarleson measures and $H^{p}$ interpolating sequences in the polydisc
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
dc.identifier.arxiv1911.07038
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-02505580
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02505580v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=AMAR,%20Eric&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record