Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAMAR, Eric
dc.date.accessioned2024-04-04T02:55:33Z
dc.date.available2024-04-04T02:55:33Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192373
dc.description.abstractEnLet $S$ be a sequence of points in $\Omega ,$ where $\Omega $ is the unit ball or the unit polydisc in ${\mathbb{C}}^{n}.$ Denote $H^{p}$($\Omega $) the Hardy space of $\Omega .$ Suppose that $S$ is $H^{p}$ interpolating with $p\geq 2.$ Then $S$ has the bounded linear extension property. The same is true for the Bergman spaces of the ball by use of the "Subordination Lemma".
dc.language.isoen
dc.title.enOn the linear extension property for interpolating sequences
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
dc.identifier.arxiv1912.01989
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-02505586
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02505586v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=AMAR,%20Eric&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée