Mostrar el registro sencillo del ítem
On the linear extension property for interpolating sequences
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | AMAR, Eric | |
dc.date.accessioned | 2024-04-04T02:55:33Z | |
dc.date.available | 2024-04-04T02:55:33Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192373 | |
dc.description.abstractEn | Let $S$ be a sequence of points in $\Omega ,$ where $\Omega $ is the unit ball or the unit polydisc in ${\mathbb{C}}^{n}.$ Denote $H^{p}$($\Omega $) the Hardy space of $\Omega .$ Suppose that $S$ is $H^{p}$ interpolating with $p\geq 2.$ Then $S$ has the bounded linear extension property. The same is true for the Bergman spaces of the ball by use of the "Subordination Lemma". | |
dc.language.iso | en | |
dc.title.en | On the linear extension property for interpolating sequences | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Variables complexes [math.CV] | |
dc.identifier.arxiv | 1912.01989 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-02505586 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02505586v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=AMAR,%20Eric&rft.genre=preprint |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |