Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorJAMING, Philippe
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorSPECKBACHER, Michael
dc.date.accessioned2024-04-04T02:55:05Z
dc.date.available2024-04-04T02:55:05Z
dc.date.issued2021
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192330
dc.description.abstractEnWe study the concentration problem on compact two-point homogeneous spaces of finite expansions of eigenfunctions of the Laplace-Beltrami operator using large sieve methods. We derive upper bounds for concentration in terms of the maximum Nyquist density. Our proof uses estimates of the spherical harmonics basis coefficients of certain zonal filters and an ordering result for Jacobi polynomials for arguments close to one.
dc.language.isoen
dc.title.enCONCENTRATION ESTIMATES FOR FINITE EXPANSIONS OF SPHERICAL HARMONICS ON TWO-POINT HOMOGENEOUS SPACES VIA THE LARGE SIEVE PRINCIPLE
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Analyse classique [math.CA]
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
dc.identifier.arxiv2004.02474
bordeaux.journalSampling Theory, Signal Processing, and Data Analysis
bordeaux.page9
bordeaux.volume19
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02532791
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02532791v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Sampling%20Theory,%20Signal%20Processing,%20and%20Data%20Analysis&rft.date=2021&rft.volume=19&rft.spage=9&rft.epage=9&rft.au=JAMING,%20Philippe&SPECKBACHER,%20Michael&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée