Do some nontrivial closed z-invariant subspaces have the division property ?
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | ESTERLE, Jean | |
dc.date.accessioned | 2024-04-04T02:54:54Z | |
dc.date.available | 2024-04-04T02:54:54Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192316 | |
dc.description.abstractEn | We consider Banach spaces E of functions holomorphic on the open unit disc D such that the unilateral shift S and the backward shift T are bounded on E. Assuming that the spectra of S and T are equal to the closed unit disc we discuss the existence of closed z-invariant of N of E having the "division property", which means that the function f λ : z → f (z)/ z−λ belongs to N for every λ ∈ D and for every f ∈ N such that f (λ) = 0. This question is related to the existence of nontrivial bi-invariant subspaces of Banach spaces of hyperfunctions on the unit circle T. | |
dc.language.iso | en | |
dc.subject.en | AMS Classification : Primary 30B40 | |
dc.subject.en | 47A15 | |
dc.subject.en | Secondary 30B60 | |
dc.subject.en | 47A68 | |
dc.title.en | Do some nontrivial closed z-invariant subspaces have the division property ? | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
dc.subject.hal | Sciences de l'ingénieur [physics]/Autre | |
dc.subject.hal | Mathématiques [math]/Variables complexes [math.CV] | |
dc.identifier.arxiv | 2005.02695 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-02563473 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02563473v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=ESTERLE,%20Jean&rft.genre=preprint |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |