Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorSTOICA, Codruta
dc.date.accessioned2024-04-04T02:53:56Z
dc.date.available2024-04-04T02:53:56Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192225
dc.description.abstractEnThe paper emphasizes the property of stability for skew-evolution semiflows on Banach spaces, defined by means of evolution semiflows and evolution cocycles and which generalize the concept introduced by us in a previous paper. There are presented several general characterizations of this asymptotic property out of which can be deduced well known results of the stability theory. A unified treatment in the uniform and in the nonuniform setting is given. The main results are also formulated in discrete time.
dc.language.isoen
dc.subject.enEvolution semiflow
dc.subject.enevolution cocycle
dc.subject.enskew-evolution semiflow
dc.subject.enexponential growth
dc.subject.enuniform exponential stability
dc.subject.enexponential stability
dc.subject.enstrongly measurable
dc.subject.en$*$-strongly measurable
dc.title.enOn Exponential Stability for Skew-Evolution Semiflows on Banach Spaces
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Analyse classique [math.CA]
dc.identifier.arxiv0804.1479
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00271542
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00271542v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=STOICA,%20Codruta&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée