Sea Target Classification Based On An A Priori Motion Model
hal.structure.identifier | THALES [France] | |
dc.contributor.author | BONDU, Jimmy | |
hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
dc.contributor.author | GRIVEL, Eric | |
hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
dc.contributor.author | GIREMUS, Audrey | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Quality control and dynamic reliability [CQFD] | |
dc.contributor.author | LEGRAND, Pierrick | |
hal.structure.identifier | THALES [France] | |
dc.contributor.author | CORRETJA, Vincent | |
hal.structure.identifier | THALES [France] | |
dc.contributor.author | POMMIER, Marie | |
dc.date.accessioned | 2024-04-04T02:53:55Z | |
dc.date.available | 2024-04-04T02:53:55Z | |
dc.date.issued | 2020 | |
dc.date.conference | 2020-08-24 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192224 | |
dc.description.abstractEn | Target classification can be of real interest for sea surveillance in both civil and military contexts. To address this issue, we present two approaches based on the Singer model. The latter has the advantage of covering a wide range of motions depending on the values of its parameters. Given noisy observations, the first method aims at estimating the motion model parameters by taking advantage of the properties of the correlation function of the estimated acceleration. It is based on a genetic algorithm. The second approach is on-line and consists in deriving a joint tracking and classification (JTC) method. Based on various simulations, we study their respective relevance in different operational settings. The proposed JTC corresponds to the best compromise in terms of performance and number of samples required. | |
dc.language.iso | en | |
dc.publisher | IEEE | |
dc.subject.en | Sea target classification | |
dc.subject.en | Singer model | |
dc.subject.en | Joint tracking and classification | |
dc.subject.en | Genetic algorithm | |
dc.subject.en | Correlation function | |
dc.title.en | Sea Target Classification Based On An A Priori Motion Model | |
dc.type | Communication dans un congrès | |
dc.identifier.doi | 10.23919/Eusipco47968.2020.9287480 | |
dc.subject.hal | Informatique [cs]/Traitement du signal et de l'image | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.conference.title | EUSIPCO 2020 - 28th European Signal Processing Conference | |
bordeaux.country | NL | |
bordeaux.conference.city | Amsterdam / Virtual | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02716100 | |
hal.version | 1 | |
hal.invited | non | |
hal.proceedings | oui | |
hal.conference.end | 2020-08-28 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02716100v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2020&rft.au=BONDU,%20Jimmy&GRIVEL,%20Eric&GIREMUS,%20Audrey&LEGRAND,%20Pierrick&CORRETJA,%20Vincent&rft.genre=unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |