Show simple item record

hal.structure.identifierLaboratoire d'Analyse, Topologie, Probabilités [LATP]
dc.contributor.authorGUÈS, Olivier
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMETIVIER, Guy
hal.structure.identifierDepartment of Mathematics [Chapel Hill]
dc.contributor.authorWILLIAMS, Mark
hal.structure.identifierDepartment of Mathematics IU
dc.contributor.authorZUMBRUN, Kevin
dc.date.accessioned2024-04-04T02:52:09Z
dc.date.available2024-04-04T02:52:09Z
dc.date.issued2008
dc.identifier.issn0012-7094
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192037
dc.description.abstractEnExtending our earlier work on Lax-type shocks of systems of conservation laws, we establish existence and stability of curved multidimensional shock fronts in the vanishing viscosity limit for general Lax- or undercompressive-type shock waves of nonconservative hyperbolic systems with parabolic regularization. The hyperbolic equations may be of variable multiplicity and the parabolic regularization may be of “real”, or partially parabolic, type. We prove an existence result for inviscid nonconservative shocks that extends to multidimensional shocks a one-dimensional result of X. Lin proved by quite different methods. In addition, we construct families of smooth viscous shocks converging to a given inviscid shock as viscosity goes to zero, thereby justifying the small viscosity limit for multidimensional nonconservative shocks. In our previous work on shocks we made use of conservative form especially in parts of the low frequency analysis. Thus, most of the new analysis of this paper is concentrated in this area. By adopting the more general nonconservative viewpoint, we are able to shed new light on both the viscous and inviscid theory. For example, we can now provide a clearer geometric motivation for the low frequency analysis in the viscous case. Also, we show that one may, in the treatment of inviscid stability of nonclassical and/or nonconservative shocks, remove an apparently restrictive technical assumption made by Mokrane and Coulombel in their work on, respectively, shocktype nonconservative boundary problems and conservative undercompressive shocks. Another advantage of the nonconservative perspective is that Lax and undercompressive shocks can be treated by exactly the same analysis.
dc.language.isoen
dc.publisherDuke University Press
dc.title.enNonclassical multidimensional viscous and inviscid shocks
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalDuke Mathematical Journal
bordeaux.pagepp 1--110
bordeaux.volume142
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00287405
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00287405v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Duke%20Mathematical%20Journal&rft.date=2008&rft.volume=142&rft.spage=pp%201--110&rft.epage=pp%201--110&rft.eissn=0012-7094&rft.issn=0012-7094&rft.au=GU%C3%88S,%20Olivier&METIVIER,%20Guy&WILLIAMS,%20Mark&ZUMBRUN,%20Kevin&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record