Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAREGBA-DRIOLLET, Denise
hal.structure.identifierLaboratoire de Mathématiques Jean Leray [LMJL]
dc.contributor.authorBERTHON, Christophe
dc.date.accessioned2024-04-04T02:49:51Z
dc.date.available2024-04-04T02:49:51Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191855
dc.description.abstractEnWe investigate finite volume schemes for the one-dimensional Kerr-Debye model of electromagnetic propagation in nonlinear media. In this relaxation quasilinear hyperbolic system, the relaxation parameter is the response time of the media. When it tends to zero, the relaxed limit is known as the Kerr system. We show that basic explicit splitting methods fail to preserve this asymptotic. Following two different viewpoints, we construct splitting implicit and well-balanced explicit approximations which are stable, entropic and own the correct asymptotic behavior. Various numerical experiments are performed.
dc.language.isoen
dc.subject.enFinite volume methods
dc.subject.enhyperbolic problems
dc.subject.enasymptotic preserving schemes
dc.subject.enrelaxation
dc.subject.enlinearly degenerate
dc.subject.enwell-balanced
dc.subject.ensplitting
dc.title.enNumerical approximation of Kerr-Debye equations
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00293728
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00293728v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=AREGBA-DRIOLLET,%20Denise&BERTHON,%20Christophe&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record