Show simple item record

hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierInstitut de rythmologie et modélisation cardiaque [Pessac] [IHU Liryc]
dc.contributor.authorDIALLO, Mohamadou Malal
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierInstitut de rythmologie et modélisation cardiaque [Pessac] [IHU Liryc]
dc.contributor.authorPOTSE, Mark
hal.structure.identifierInstitut de rythmologie et modélisation cardiaque [Pessac] [IHU Liryc]
hal.structure.identifierInstitut National de la Santé et de la Recherche Médicale [INSERM]
hal.structure.identifierCentre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
dc.contributor.authorDUBOIS, Rémi
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierInstitut de rythmologie et modélisation cardiaque [Pessac] [IHU Liryc]
dc.contributor.authorCOUDIÈRE, Yves
dc.date.accessioned2024-04-04T02:49:36Z
dc.date.available2024-04-04T02:49:36Z
dc.date.conference2020-09-13
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191835
dc.description.abstractEnWe propose a methodology to take into account the location of scars in ECGI problem. The method is to consider the whole body, including blood, heart and remaining volume as a conductor with an electric current source field localized in the heart. We identify the source best matching a given body surface potential map, by solving the classical quadratic optimization problem with a Tikhonov regu-larization term. The method behaves better than the MFS method in presence of a scar. The correlation coefficients of the activation times around the scar are improved up to 10 % on the epicardium, and 7 % on the endocardium, by adapting the Tikhonov regularization parameter and conductivity coefficient in the scar. 1. Introduction Electrocardiographic imaging (ECGI) is a non-invasive technique that is used to reconstruct the electrical activity of the heart from body surface electrical potential maps (BSPM), and the geometry of the heart and torso. The most common approach to compute this reconstruction is based on the model of the torso as a passive volume conductor , outside the heart. Hence the Laplace equation is set on the volume between the epicardium and the body surface. The method of fundamental solutions (MFS) with Tikhonov regularization is commonly used to solve the corresponding ECGI problem [1]. In clinical care, structural images of the patient are often available. A major question is therefore how to integrate this information in order to drive the inverse problem. It is limited because it cannot easily take into account scars inside the heart volume , and also because it assumes that cardiac sources are only distributed on the epicardium. In this paper, we consider the torso as a volume conductor including the intracavitary blood, the heart and the remaining torso volume, in which only the heart volume behaves as an electric current source field. Hence we try to reconstruct the cardiac electrical volume source, and we can take into account a different electrical conductivity in each of the regions, and in particular in the scar. We dis-cretize the equation with a standard finite element method, and apply the same Tikhonov regularization technique as with the MFS. We will refer to this method as the volume method (VM). In order to account for scars, we propose to increase the regularization parameter in the scar, which is possible with both the usual MFS and the proposed VM, but also to decrease the conductivity in the scar, which is possible only with the VM method. Datasets computed on a realistic human-based anatomical model [2] were used to evaluate the method. The activation times (ATs) recovered by the standard MFS and VM method were compared to the reference ATs obtained from the model. We found that weighting the regulariza-tion parameter and decreasing the electrical conductivity by a factor 10 in the scar improved the correlation between the estimated and the true ATs, especially near the scar.
dc.description.sponsorshipL'Institut de Rythmologie et modélisation Cardiaque - ANR-10-IAHU-0004
dc.language.isoen
dc.title.enSolving the ECGI problem with known locations of scar regions
dc.typeCommunication dans un congrès
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleCinC 2020 - Computing in Cardiology
bordeaux.countryIT
bordeaux.conference.cityRimini / Virtual
bordeaux.peerReviewedoui
hal.identifierhal-02945886
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2020-09-16
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02945886v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=DIALLO,%20Mohamadou%20Malal&POTSE,%20Mark&DUBOIS,%20R%C3%A9mi&COUDI%C3%88RE,%20Yves&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record