Afficher la notice abrégée

dc.contributor.advisorPhilippe Jaming
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorNEGREIRA, Felipe
dc.contributor.otherAlexandre Borichev [Président]
dc.contributor.otherStéphane Jaffard [Rapporteur]
dc.contributor.otherKarlheinz Gröchenig [Rapporteur]
dc.contributor.otherHajer Bahouri
dc.date.accessioned2024-04-04T02:49:19Z
dc.date.available2024-04-04T02:49:19Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191813
dc.identifier.nnt2020BORD0051
dc.description.abstractDans cette thèse, nous étudions différentes variations des inégalités d’échantillonnage. Tout d’abord, en reflétant un résultat dans [56], nous donnons des conditions pour l’échantillonnage des fonctions de Besov définies sur des variétés Riemanniennes compactes et des espaces de type homogène. Les techniques utilisées pour prouver ces résultats sont basées sur la décomposition des fonctions lisses en ondelettes disponibles dans ces deux contextes. De plus, comme dans le cas de l’euclidien, cette caractérisation par une expansion en ondelettes permet d’approfondir l’étude des espaces de Besov, obtenant ansi un théorème de trace et des résultats sur leur régularité locale (inspirés des stratégies développées dans [21, 54]). Enfin, nous passons à travailler dans le cadre classique de la théorie de l’échantillonnage, mais en changeant la façon dont les échantillons sont pris: au lieu de prendre un ensemble de points discrets, nous considérons un certain type de courbes. En particulier, nous déterminons la fréquence de Nyquist pour les spirales lorsque nous échantillonnons des fonctions à bande limitée. Nous montrons ensuite qu’en dessous de cette fréquence, la quantité de sous-échantillonnage que les signaux compressibles admettent lorsqu’ils sont échantillonnés en spirale est limitée.
dc.description.abstractEnIn this thesis we study different variations of sampling inequalities. First,mirroring a result in [56], we give the conditions for sampling-like inequalities for Besov functions on compact Riemannian manifolds and spaces of homogeneous type. The techniques used to prove these results are based on the decomposition of smooth functions into wavelets available in both of these settings. Further, as in the euclidean case, this characterization through a wavelet expansion allows us to deepen the study of Besov spaces, obtaining a trace theorem and results about their local regularity (inspired in the strategies developed in [21, 54]). Finally we shift to work within the classic setting of sampling theory but changing the way samples are taken: instead of taking a discrete set of points we consider certain type of curves. In particular we determine the Nyquist rate for spirals when sampling bandlimited functions. We then show that, below this rate, the amount of undersampling that compressible signals admit when sampled along spirals is limited.
dc.language.isoen
dc.subjectThéorie de l'Echantillonage
dc.subjectEspaces de type homogène.
dc.subjectEspaces de Besov
dc.subject.enSampling Theory
dc.subject.enSpaces of homogeneous type
dc.subject.enBesov spaces
dc.titleExtensions de la théorie de l'échantillonnage : échantillonnage sur des espaces de type homogène et échantillonnage le long de courbes
dc.title.enExtensions of sampling theory : sampling on spaces of homogeneous type and sampling along curves
dc.typeThèses de doctorat
dc.subject.halInformatique [cs]/Analyse numérique [cs.NA]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.type.institutionUniversité de Bordeaux
bordeaux.ecole.doctoraleÉcole doctorale de mathématiques et informatique (Talence, Gironde ; 1991-....)
hal.identifiertel-02957686
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//tel-02957686v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Extensions%20de%20la%20th%C3%A9orie%20de%20l'%C3%A9chantillonnage%20:%20%C3%A9chantillonnage%20sur%20des%20espaces%20de%20type%20homog%C3%A8ne%20et%20%C3%A9chantillonnage&rft.atitle=Extensions%20de%20la%20th%C3%A9orie%20de%20l'%C3%A9chantillonnage%20:%20%C3%A9chantillonnage%20sur%20des%20espaces%20de%20type%20homog%C3%A8ne%20et%20%C3%A9chantillonnag&rft.au=NEGREIRA,%20Felipe&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée