Good rings and homogeneous polynomials
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | FRESNEL, J. | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MATIGNON, Michel | |
dc.date.accessioned | 2024-04-04T02:49:17Z | |
dc.date.available | 2024-04-04T02:49:17Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191809 | |
dc.description.abstractEn | In 2011, Khurana, Lam and Wang define the following property. (*)A commutative unital ring A satisfies the property "power stable range one" if for all a, b ∈ A with aA + bA = A there are an integer N = N (a, b) ≥ 1 and λ = λ(a, b) ∈ A such that b N + λa ∈ A × , the unit group of A. In 2019, Berman and Erman consider rings with the following property (**) A commutative unital ring A has enough homogeneous polynomials if for any k ≥ 1 and set S := {p 1 , p 2 , ..., p k } , of primitive points in A n and any n ≥ 2, there exists an homogeneous polynomial P (X 1 , X 2 , ..., X n) ∈ A[X 1 , X 2 , ..., X n ]) with deg P ≥ 1 and P (p i) ∈ A × for 1 ≤ i ≤ k. We show in this article that the two properties (*) and (**) are equivalent and we shall call a commutative unital ring with these properties a good ring. When A is a commutative unital ring of pictorsion as defined by Gabber, Lorenzini and Liu in 2015, we show that A is a good ring. Using a Dedekind domain we built by Goldman in 1963,we show that the converse is false. | |
dc.language.iso | en | |
dc.title.en | Good rings and homogeneous polynomials | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Algèbre commutative [math.AC] | |
dc.subject.hal | Mathématiques [math]/Géométrie algébrique [math.AG] | |
dc.identifier.arxiv | 1907.05655 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-02173007 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02173007v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=FRESNEL,%20J.&MATIGNON,%20Michel&rft.genre=preprint |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |