On a fast and nearly division-free algorithm for the characteristic polynomial
hal.structure.identifier | Lithe and fast algorithmic number theory [LFANT] | |
hal.structure.identifier | Analyse cryptographique et arithmétique [CANARI] | |
dc.contributor.author | JOHANSSON, Fredrik | |
dc.date.accessioned | 2024-04-04T02:48:44Z | |
dc.date.available | 2024-04-04T02:48:44Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191768 | |
dc.description.abstractEn | We review the Preparata-Sarwate algorithm, a simple $O(n^{3.5})$ method for computing the characteristic polynomial, determinant and adjugate of an $n \times n$ matrix using only ring operations together with exact divisions by small integers. The algorithm is a baby-step giant-step version of the more well-known Faddeev-Leverrier algorithm. We make a few comments about the algorithm and evaluate its performance empirically. | |
dc.language.iso | en | |
dc.title.en | On a fast and nearly division-free algorithm for the characteristic polynomial | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Informatique [cs]/Calcul formel [cs.SC] | |
dc.subject.hal | Informatique [cs]/Analyse numérique [cs.NA] | |
dc.identifier.arxiv | 2011.12573 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-03016034 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03016034v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=JOHANSSON,%20Fredrik&rft.genre=preprint |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |