Registration-based model reduction in complex two-dimensional geometries
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS] | |
dc.contributor.author | TADDEI, Tommaso | |
hal.structure.identifier | Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | ZHANG, Lei | |
dc.date.accessioned | 2024-04-04T02:47:34Z | |
dc.date.available | 2024-04-04T02:47:34Z | |
dc.date.issued | 2021-08-04 | |
dc.identifier.issn | 0885-7474 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191654 | |
dc.description.abstractEn | We present a general -- i.e., independent of the underlying equation -- registration procedure for parameterized model order reduction. Given the spatial domain $\Omega \subset \mathbb{R}^2$ and the manifold $\mathcal{M}= \{ u_{\mu} : \mu \in \mathcal{P} \}$ associated with the parameter domain $\mathcal{P} \subset \mathbb{R}^P$ and the parametric field $\mu \mapsto u_{\mu} \in L^2(\Omega)$, our approach takes as input a set of snapshots $\{ u^k \}_{k=1}^{n_{\rm train}} \subset \mathcal{M}$ and returns a parameter-dependent bijective mapping $\underline{\Phi}: \Omega \times \mathcal{P} \to \mathbb{R}^2$: the mapping is designed to make the mapped manifold $\{ u_{\mu} \circ \underline{\Phi}_{\mu}: \, \mu \in \mathcal{P} \}$ more amenable for linear compression methods. In this work, we extend and further analyze the registration approach proposed in [Taddei, SISC, 2020]. The contributions of the present work are twofold. First, we extend the approach to deal with annular domains by introducing a suitable transformation of the coordinate system. Second, we discuss the extension to general two-dimensional geometries: towards this end, we introduce a spectral element approximation, which relies on a partition $\{ \Omega_{q} \}_{q=1} ^{N_{\rm dd}}$ of the domain $\Omega$ such that $\Omega_1,\ldots,\Omega_{N_{\rm dd}}$ are isomorphic to the unit square. We further show that our spectral element approximation can cope with parameterized geometries. We present rigorous mathematical analysis to justify our proposal; furthermore, we present numerical results for a heat-transfer problem in an annular domain and for a potential flow past a rotating airfoil to demonstrate the effectiveness of our method. | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.subject.en | Parameterized partial differential equations | |
dc.subject.en | Model order reduction | |
dc.subject.en | Registration methods | |
dc.subject.en | Nonlinear approximations | |
dc.title.en | Registration-based model reduction in complex two-dimensional geometries | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s10915-021-01584-y | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
dc.identifier.arxiv | 2101.10259 | |
dc.description.sponsorshipEurope | Accurate Roms for Industrial Applications | |
bordeaux.journal | Journal of Scientific Computing | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03121165 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03121165v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Scientific%20Computing&rft.date=2021-08-04&rft.eissn=0885-7474&rft.issn=0885-7474&rft.au=TADDEI,%20Tommaso&ZHANG,%20Lei&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |