Registration-based model reduction in complex two-dimensional geometries
TADDEI, Tommaso
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
ZHANG, Lei
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
TADDEI, Tommaso
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
ZHANG, Lei
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Article de revue
Este ítem está publicado en
Journal of Scientific Computing. 2021-08-04
Springer Verlag
Resumen en inglés
We present a general -- i.e., independent of the underlying equation -- registration procedure for parameterized model order reduction. Given the spatial domain $\Omega \subset \mathbb{R}^2$ and the manifold $\mathcal{M}= ...Leer más >
We present a general -- i.e., independent of the underlying equation -- registration procedure for parameterized model order reduction. Given the spatial domain $\Omega \subset \mathbb{R}^2$ and the manifold $\mathcal{M}= \{ u_{\mu} : \mu \in \mathcal{P} \}$ associated with the parameter domain $\mathcal{P} \subset \mathbb{R}^P$ and the parametric field $\mu \mapsto u_{\mu} \in L^2(\Omega)$, our approach takes as input a set of snapshots $\{ u^k \}_{k=1}^{n_{\rm train}} \subset \mathcal{M}$ and returns a parameter-dependent bijective mapping $\underline{\Phi}: \Omega \times \mathcal{P} \to \mathbb{R}^2$: the mapping is designed to make the mapped manifold $\{ u_{\mu} \circ \underline{\Phi}_{\mu}: \, \mu \in \mathcal{P} \}$ more amenable for linear compression methods. In this work, we extend and further analyze the registration approach proposed in [Taddei, SISC, 2020]. The contributions of the present work are twofold. First, we extend the approach to deal with annular domains by introducing a suitable transformation of the coordinate system. Second, we discuss the extension to general two-dimensional geometries: towards this end, we introduce a spectral element approximation, which relies on a partition $\{ \Omega_{q} \}_{q=1} ^{N_{\rm dd}}$ of the domain $\Omega$ such that $\Omega_1,\ldots,\Omega_{N_{\rm dd}}$ are isomorphic to the unit square. We further show that our spectral element approximation can cope with parameterized geometries. We present rigorous mathematical analysis to justify our proposal; furthermore, we present numerical results for a heat-transfer problem in an annular domain and for a potential flow past a rotating airfoil to demonstrate the effectiveness of our method.< Leer menos
Palabras clave en inglés
Parameterized partial differential equations
Model order reduction
Registration methods
Nonlinear approximations
Proyecto europeo
Accurate Roms for Industrial Applications
Orígen
Importado de HalCentros de investigación