Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorSHI, Hui
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorTRAONMILIN, Yann
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAUJOL, Jean-François
dc.date.accessioned2024-04-04T02:46:58Z
dc.date.available2024-04-04T02:46:58Z
dc.date.conference2021-05-16
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191600
dc.description.abstractEnThe Expected Patch Log-Likelihood algorithm (EPLL) and its extensions have shown good performances for image denoising. It estimates a Gaussian mixture model (GMM) from a training database of image patches and it uses the GMM as a prior for denoising. In this work, we adapt the sketching framework to carry out the compressive estimation of Gaussian mixture models with low rank covariances for image patches. With this method, we estimate models from a compressive representation of the training data with a learning cost that does not depend on the number of items in the database. Our method adds another dimension reduction technique (low-rank modeling of covariances) to the existing sketching methods in order to reduce the dimension of model parameters and to add flexibility to the modeling. We test our model on synthetic data and real large-scale data for patch-based image denoising. We show that we can produce denoising performance close to the models estimated from the original training database, opening the way for the study of denoising strategies using huge patch databases.
dc.description.sponsorshipRégularisation performante de problèmes inverses en grande dimension pour le traitement de données - ANR-20-CE40-0001
dc.language.isoen
dc.subject.enImage denoising
dc.subject.enSketching
dc.subject.enOptimisation
dc.subject.enMachine learning
dc.title.enSketched learning for image denoising
dc.typeCommunication dans un congrès
dc.subject.halMathématiques [math]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleThe Eighth International Conference on Scale Space and Variational Methods in Computer Vision (SSVM)
bordeaux.countryFR
bordeaux.conference.cityCabourg
bordeaux.peerReviewedoui
hal.identifierhal-03123805
hal.version1
hal.invitednon
hal.proceedingsnon
hal.conference.end2021-05-20
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03123805v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=SHI,%20Hui&TRAONMILIN,%20Yann&AUJOL,%20Jean-Fran%C3%A7ois&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record