Compact operators that commute with a contraction
hal.structure.identifier | Laboratoire d'Analyse, Topologie, Probabilités [LATP] | |
dc.contributor.author | KELLAY, Karim | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | ZARRABI, Mohamed | |
dc.date.accessioned | 2024-04-04T02:46:32Z | |
dc.date.available | 2024-04-04T02:46:32Z | |
dc.date.created | 2008-09-18 | |
dc.date.issued | 2009-12-10 | |
dc.identifier.issn | 0378-620X | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191560 | |
dc.description.abstractEn | Let $T$ be a $C_0$--contraction on a separable Hilbert space. We assume that $I_H-T^*T$ is compact. For a function $f$ holomorphic in the unit disk $\DD$ and continuous on $\overline\DD$, we show that $f(T)$ is compact if and only if $f$ vanishes on $\sigma (T)\cap \TT$, where $\sigma (T)$ is the spectrum of $T$ and $\TT$ the unit circle. If $f$ is just a bounded holomorphic function on $\DD$ we prove that $f(T)$ is compact if and only if $\lim_{n\to \infty} T^nf(T) =0$. | |
dc.description.sponsorship | Dynamique des opérateurs - ANR-07-BLAN-0249 | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.subject.en | compact operators | |
dc.subject.en | essentially unitary | |
dc.subject.en | commutant | |
dc.title.en | Compact operators that commute with a contraction | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
dc.identifier.arxiv | 0809.3184 | |
bordeaux.journal | Integral Equations and Operator Theory | |
bordeaux.page | 543-550 | |
bordeaux.volume | 65 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 4 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00322683 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00322683v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Integral%20Equations%20and%20Operator%20Theory&rft.date=2009-12-10&rft.volume=65&rft.issue=4&rft.spage=543-550&rft.epage=543-550&rft.eissn=0378-620X&rft.issn=0378-620X&rft.au=KELLAY,%20Karim&ZARRABI,%20Mohamed&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |