Bernstein inequalities via the heat semigroup
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | IMEKRAZ, Rafik | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | OUHABAZ, El Maati | |
dc.date.accessioned | 2024-04-04T02:46:28Z | |
dc.date.available | 2024-04-04T02:46:28Z | |
dc.date.created | 2019-10-01 | |
dc.date.issued | 2022-02 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191554 | |
dc.description.abstractEn | We extend the classical Bernstein inequality to a general setting including Schrödinger operators and divergence form elliptic operators on Riemannian manifolds or domains. Moreover , we prove a new reverse inequality that can be seen as the dual of the Bernstein inequality. The heat kernel will be the backbone of our approach but we also develop new techniques such as semi-classical Bernstein inequalities, weak factorization of smooth functions à la Dixmier-Malliavin and BM O − L ∞ multiplier results (in contrast to the usual L ∞ − BM O ones). Also, our approach reveals a link between the L p-Bernstein inequality and the boundedness on L p of the Riesz transform. The later being an important subject in harmonic analysis. 2010 Mathematics Subject Classifications: 35P20, 58J50, 42B37 and 47F05. | |
dc.description.sponsorship | Etudes de solutions spéciales pour des équations dispersives - ANR-18-CE40-0028 | |
dc.description.sponsorship | Analyse Réelle et Géométrie - ANR-18-CE40-0012 | |
dc.language.iso | en | |
dc.title.en | Bernstein inequalities via the heat semigroup | |
dc.type | Document de travail - Pré-publication | |
dc.identifier.doi | 10.1007/s00208-021-02221-7 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
dc.subject.hal | Mathématiques [math]/Théorie spectrale [math.SP] | |
dc.identifier.arxiv | 1910.01326 | |
bordeaux.page | 783-819 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-02303134 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02303134v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2022-02&rft.spage=783-819&rft.epage=783-819&rft.au=IMEKRAZ,%20Rafik&OUHABAZ,%20El%20Maati&rft.genre=preprint |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |