Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
dc.contributor.authorCARUSO, Xavier
dc.date.accessioned2024-04-04T02:46:19Z
dc.date.available2024-04-04T02:46:19Z
dc.date.issued2021
dc.identifier.issn2429-7100
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191538
dc.description.abstractEnThis paper constitutes a first attempt to do analysis with skew polynomials. Precisely, our main objective is to develop a theory of residues for skew rational functions (which are, by definition, the quotients of two skew polynomials). We prove in particular a skew analogue of the residue formula and a skew analogue of the classical formula of change of variables for residues.
dc.language.isoen
dc.publisherÉcole polytechnique
dc.title.enA theory of residues for skew rational functions
dc.typeArticle de revue
dc.identifier.doi10.5802/jep.169
dc.subject.halMathématiques [math]/Anneaux et algèbres [math.RA]
dc.subject.halMathématiques [math]/Théorie de l'information et codage [math.IT]
dc.subject.halInformatique [cs]/Calcul formel [cs.SC]
dc.identifier.arxiv1908.08430
bordeaux.journalJournal de l'École polytechnique — Mathématiques
bordeaux.page1159-1192
bordeaux.volume8
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02268790
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02268790v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20de%20l'%C3%89cole%20polytechnique%20%E2%80%94%20Math%C3%A9matiques&rft.date=2021&rft.volume=8&rft.spage=1159-1192&rft.epage=1159-1192&rft.eissn=2429-7100&rft.issn=2429-7100&rft.au=CARUSO,%20Xavier&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record