Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
hal.structure.identifierAnalyse cryptographique et arithmétique [CANARI]
dc.contributor.authorCARUSO, Xavier
hal.structure.identifierLaboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
dc.contributor.authorMEZZAROBBA, Marc
hal.structure.identifierKobe University
dc.contributor.authorTAKAYAMA, Nobuki
hal.structure.identifierXLIM [XLIM]
dc.contributor.authorVACCON, Tristan
dc.date.accessioned2024-04-04T02:46:18Z
dc.date.available2024-04-04T02:46:18Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191537
dc.description.abstractEnWe design algorithms for computing values of many p-adic elementary and special functions, including logarithms, exponentials, polylogarithms, and hypergeometric functions. All our algorithms feature a quasi-linearccomplexity with respect to the target precision and most of them are based on an adaptation to the p-adic setting of the binary splitting and bit-burst strategies.
dc.language.isoen
dc.subject.enAlgorithms
dc.subject.enp-adic numbers
dc.subject.endifferential equations
dc.subject.enbinary splitting
dc.title.enFast evaluation of some p-adic transcendental functions
dc.typeDocument de travail - Pré-publication
dc.subject.halInformatique [cs]/Calcul formel [cs.SC]
dc.identifier.arxiv2106.09315
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-03263044
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03263044v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=CARUSO,%20Xavier&MEZZAROBBA,%20Marc&TAKAYAMA,%20Nobuki&VACCON,%20Tristan&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record