Modelling phase transition in metastable liquids: Application to cavitating and flashing flows.
hal.structure.identifier | Institut universitaire des systèmes thermiques industriels [IUSTI] | |
hal.structure.identifier | Simulation, modeling and analysis of heterogeneous systems [SMASH] | |
dc.contributor.author | SAUREL, Richard | |
hal.structure.identifier | Institut universitaire des systèmes thermiques industriels [IUSTI] | |
hal.structure.identifier | Simulation, modeling and analysis of heterogeneous systems [SMASH] | |
dc.contributor.author | PETITPAS, Fabien | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Algorithms and high performance computing for grand challenge applications [SCALAPPLIX] | |
dc.contributor.author | ABGRALL, Remi | |
dc.date.accessioned | 2024-04-04T02:45:44Z | |
dc.date.available | 2024-04-04T02:45:44Z | |
dc.date.issued | 2008 | |
dc.identifier.issn | 0022-1120 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191493 | |
dc.description.abstractEn | A hyperbolic two-phase flow model involving five partial differential equations is constructed for liquid-gas interface modelling. The model is able to deal with interfaces of simple contact where normal velocity and pressure are continuous as well as transition fronts where heat and mass transfer occur, involving pressure and velocity jumps. These fronts correspond to extra waves in the system. The model involves two temperatures and entropies but a single pressure and a single velocity. The closure is achieved by two equations of state that reproduce the phase diagram when equilibrium is reached. Relaxation toward equilibrium is achieved by temperature and chemical potential relaxation terms whose kinetics is considered infinitely fast at specific locations only, typically at evaporation fronts. Thus, metastable states are involved for locations far from these fronts. Computational results are compared to the experimental ones. Computed and measured front speeds are of the same order of magnitude and the same tendency of increasing front speed with initial temperature is reported. Moreover, the limit case of evaporation fronts propagating in highly metastable liquids with the Chapman-Jouguet speed is recovered as an expansion wave of the present model in the limit of stiff thermal and chemical relaxation. | |
dc.language.iso | en | |
dc.publisher | Cambridge University Press (CUP) | |
dc.title.en | Modelling phase transition in metastable liquids: Application to cavitating and flashing flows. | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
dc.subject.hal | Physique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph] | |
dc.subject.hal | Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph] | |
bordeaux.journal | Journal of Fluid Mechanics | |
bordeaux.page | 313-350 | |
bordeaux.volume | 607 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | inria-00333908 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//inria-00333908v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Fluid%20Mechanics&rft.date=2008&rft.volume=607&rft.spage=313-350&rft.epage=313-350&rft.eissn=0022-1120&rft.issn=0022-1120&rft.au=SAUREL,%20Richard&PETITPAS,%20Fabien&ABGRALL,%20Remi&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |