Afficher la notice abrégée

hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorBENDAHMANE, Mostafa
hal.structure.identifierDépartement de Mathématiques et Informatique - Université de Nantes
dc.contributor.authorMROUE, Fatima
hal.structure.identifierLaboratoire de Mathématiques Jean Leray [LMJL]
dc.contributor.authorSAAD, Mazen
hal.structure.identifierالجامعة اللبنانية [بيروت] = Lebanese University [Beirut] = Université libanaise [Beyrouth] [LU / ULB]
dc.contributor.authorTALHOUK, Raafat
dc.date.accessioned2024-04-04T02:44:33Z
dc.date.available2024-04-04T02:44:33Z
dc.date.issued2019-12
dc.identifier.issn1468-1218
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191417
dc.description.abstractEnIn this paper, we apply a rigorous homogenization method based on unfolding operators to a microscopic bidomain model representing the electrical activity of the heart at a cellular level. The heart is represented by an arbitrary open bounded connected domain with smooth boundary and the cardiac cells’ (myocytes) domain is viewed as a periodic region. We start by proving the well posedness of the microscopic problem by using Faedo–Galerkin method and -compactness argument on the membrane surface without any restrictive assumptions on the conductivity matrices. Using the unfolding method in homogenization, we show that the sequence of solutions constructed in the microscopic model converges to the solution of the macroscopic bidomain model. Because of the nonlinear ionic function, the proof is based on the surface unfolding method and Kolmogorov compactness argument.
dc.description.sponsorshipCentre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
dc.language.isoen
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by-nc/
dc.subject.enBidomain model
dc.subject.enReaction–diffusion system
dc.subject.enHomogenization theory
dc.subject.enUnfolding method
dc.subject.enConvergence
dc.title.enUnfolding homogenization method applied to physiological and phenomenological bidomain models in electrocardiology
dc.typeArticle de revue
dc.identifier.doi10.1016/j.nonrwa.2019.05.006
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalNonlinear Analysis: Real World Applications
bordeaux.page413-447
bordeaux.volume50
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02142028
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02142028v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nonlinear%20Analysis:%20Real%20World%20Applications&rft.date=2019-12&rft.volume=50&rft.spage=413-447&rft.epage=413-447&rft.eissn=1468-1218&rft.issn=1468-1218&rft.au=BENDAHMANE,%20Mostafa&MROUE,%20Fatima&SAAD,%20Mazen&TALHOUK,%20Raafat&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée